



# Remote Control Manual

**Remote Control Manual for Teledyne  
Test Tools bench top Digital  
Multimeters T3DMM4-5, T3DMM5-5,  
T3DMM6-5 and T3DMM6-5-SC**

## Catalogue

|                                                                           |    |
|---------------------------------------------------------------------------|----|
| SCPI Command .....                                                        | 2  |
| Introduction to the SCPI Language .....                                   | 2  |
| Syntax Conventions .....                                                  | 2  |
| Command Separators .....                                                  | 3  |
| Using the MIN, MAX and DEF Parameters .....                               | 3  |
| Querying Parameter Settings.....                                          | 3  |
| IEEE-488.2 Common Commands .....                                          | 4  |
| SCPI Parameter Types.....                                                 | 5  |
| Command in this Manual .....                                              | 6  |
| 1.1 ABORT.....                                                            | 6  |
| 1.2 FETCh?.....                                                           | 7  |
| 1.3 INITiate[:IMMEDIATE] .....                                            | 8  |
| 1.4 OUTPut:TRIGger:SLOPe {POSitive NEGative} .....                        | 9  |
| 1.5 R? [<max_readings>].....                                              | 10 |
| 1.6 READ?.....                                                            | 11 |
| 1.7 SAMPLe:COUNt {<count> MIN MAX DEF} SAMPLe:COUNt? [{MIN MAX DEF}]...12 | 12 |
| 1.8 UNIT:TEMPerature {C F K} UNIT:TEMPerature? .....                      | 13 |
| System Command.....                                                       | 14 |
| 2.1 CALCulate Subsystem.....                                              | 14 |
| 2.2 CALCulate:LIMit Subsystem .....                                       | 15 |
| 2.3 CALCulate:TRANSform:HISTogram Subsystem.....                          | 19 |
| 2.4 CALCulate:SCALe Subsystem.....                                        | 26 |
| 2.5 CALCulate:AVERage Subsystem .....                                     | 31 |
| 2.6 CONFIGure Subsystem .....                                             | 35 |
| 2.7 DATA Subsystem .....                                                  | 44 |
| 2.8 MEASure Subsystem .....                                               | 46 |
| 2.9 SENSe Subsystem Introduction .....                                    | 54 |
| 2.10 SYSTem Subsystem.....                                                | 90 |
| 2.11 TRIGger Subsystem .....                                              | 92 |
| 2.12 ROUTe Subsystem.....                                                 | 97 |

# SCPI Command

## Introduction to the SCPI Language

SCPI (Standard Commands for Programmable Instruments) is an ASCII-based programming language for test and measurement instruments. SCPI commands use a hierarchical structure known as a tree system. Associated commands are grouped under a common node or root, thus forming subsystems. A portion of the SENSe subsystem illustrates this, below.

SENSe: VOLtage:

```
DC:RANGE {<range>|MIN|MAX|DEF}  
DC:RANGE? [MINimum | MAXimum | DEFault]
```

**SENSe** is the root keyword of the command, **VOLTage** is a second-level keyword, and **DC** is a third-level keyword. A colon ( : ) separates consecutive keywords.

## Syntax Conventions

The command syntax format is illustrated below:

```
VOLTage:DC:RANGE {<range>|MIN|MAX|DEF}
```

Most commands (and some parameters) are a mixture of upper- and lower-case letters. The upper-case letters indicate the command's abbreviated spelling, which yields shorter program lines. For better program readability, use the long form.

For example, consider the keyword VOLTage, above. You can type VOLT or VOLTage in any combination of upper- or lower-case letters. Therefore, VolTaGe, volt and Volt are all acceptable. Other forms, such as VOL and VOLTAG, will generate an error.

- Braces ( { } ) enclose the parameter choices. The braces are not sent with the command string.
- A vertical bar ( | ) separates parameter choices. For example, {<range>|MIN|MAX|DEF} in the above command indicates that you can specify a numeric range parameter, or "MIN", "MAX" or "DEF". The bar is not sent with the command string.
- Angle brackets ( < > ) indicate that you must specify a value for the enclosed parameter. For example, the above syntax statement shows the <range> parameter in angle brackets. Do not send the brackets with the command string. You must specify a value for the parameter (for example "VOLT:DC:RANG 10") unless you select one of the other options shown in the syntax (for example "VOLT:DC:RANG MIN").
- Optional parameters are enclosed in square brackets ( [ ] ). The brackets are not sent with the command string. If you do not specify a value for an optional parameter, the instrument uses a default value.

## Command Separators

**A colon ( : )** separates consecutive different levels of keywords.. You must insert a blank space to separate a parameter from a command keyword. If a command requires more than one parameter, separate adjacent parameters using a comma:

DATA:REMove?5,1

**A semicolon ( ; )** separates commands within the same subsystem and can also minimize typing. For example, the following string:

TRIG:COUNT 2;SOUR EXT

Equivalent to the following two commands:

TRIG:COUNT 2

TRIG:SOUR EXT

Use a colon and a semicolon to link commands from different subsystems. For example, in the following example, an error is generated if you do not use both the colon and semicolon:

TRIG:COUN 2;:SAMP:COUN 2

## Using the MIN, MAX and DEF Parameters

For many commands, you can substitute "MIN" or "MAX" in place of a parameter. In some cases you may also substitute "DEF". For example, consider The following example:

VOLTage:DC:RANGe {<range>|MIN|MAX|DEF}

Instead of selecting a specific value for the <range> parameter, you can substitute MIN to set the range to its minimum value, MAX to set the range to its maximum value or DEF to set the range to its default value.

## Querying Parameter Settings

You can query the current value of most parameters by adding a question mark ( ? ) to the command. For example,The following example sets the trigger count to 10 measurements:

TRIG:COUN 10

You can then query the count value by sending:

TRIG:COUN?

You can also query the minimum or maximum count allowed as follows:

TRIG:COUN? MIN

TRIG:COUN? MAX

## IEEE-488.2 Common Commands

The IEEE-488.2 standard defines a set of common commands that perform functions such as reset, self-test and status operations.

Common commands always begin with an asterisk ( \* ), are three characters in length and may include one or more parameters.

The command keyword is separated from the first parameter by a blank space.

Use a semicolon ( ; ) to separate multiple commands as shown below:

\*RST; \*CLS; \*ESE 32; \*OPC?

# SCPI Parameter Types

The SCPI language defines several data formats to be used in program messages and response messages.

## Numeric Parameters

Commands that require numeric parameters will accept all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation. Special values for numeric parameters such as MIN,MAX and DEF are also accepted. You can also send engineering unit suffixes with numeric parameters (e.g., M, k, m or u). If a command accepts only certain specific values, the instrument will automatically round the input numeric parameters to the accepted values. The following command requires a numeric parameter for the range value:

```
VOLTage:DC:RANGE {<range>|MIN|MAX|DEF}
```

Because the SCPI parser is case-insensitive, there is some confusion over the letter "M" (or "m"). For your convenience, the instrument interprets "mV" (or "MV") as millivolts, but "MHZ" (or "mhz") as megahertz. Likewise "MΩ" (or "mΩ") is interpreted as megΩ. You can use the prefix "MA" for mega. For example, "MAV" is interpreted as megavolts.

## Discrete Parameters

Discrete parameters are used to program settings that have a limited number of values (like IMMEDIATE, EXTERNAL or BUS). They have a short form and a long form just like command keywords. You can mix upper- and lower-case letters. Query responses will always return the short form in all upper-case letters. The following example requires discrete parameters for the temperature units:

```
UNIT:TEMPERATURE{C|F|K}
```

## Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. For a false condition, the instrument will accept "OFF" or "0". For a true condition, the instrument will accept "ON" or "1". When you query a Boolean setting, the instrument will always return "0" or "1". The following example requires a Boolean parameter:

```
DISPLAY:STATE {ON|1|OFF|0}
```

## Commands in this Manual

### 1.1 ABORt

Aborts a measurement in progress, returning the instrument to the trigger idle state.

| Parameter | Typical Return |
|-----------|----------------|
| (none)    | (none)         |

Abort a measurement in progress:

TRIG:SOUR IMM //Set the trigger source for immediate trigger  
TRIG:COUN 10 //Set the trigger source for 10 times  
INIT //Set the trigger state for “wait for trigger”  
ABOR //Interrupt the measurement

This command may be used to abort a measurement when the instrument is waiting for a trigger, or for aborting a long measurement or series of measurements.

## 1.2 FETCh?

Waits for measurements to complete and copies all available measurements to the instrument's output buffer. The readings remain in reading memory.

| Parameter                                                                                                                                                                                                                                                                                                                                                          | Typical Return                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| (none)                                                                                                                                                                                                                                                                                                                                                             | -5.75122019E-04, -5.77518360E-04, -5.73923848E-04, -5.76020647E-04 |
| Set the trigger source for immediate trigger, the INIT command will instrument in "waiting for trigger" state, in the immediate trigger condition, measurements will immediately be triggered and the measurement results are sent to the measurement of memory. The FETCh? query transfers the measurement from reading memory to the instrument's output buffer. |                                                                    |
| TRIG:SOUR IMM                                                                                                                                                                                                                                                                                                                                                      | //Set the trigger source for immediate trigger                     |
| TRIG:COUN 10                                                                                                                                                                                                                                                                                                                                                       | //Set the trigger source for 10 times                              |
| INIT                                                                                                                                                                                                                                                                                                                                                               | //Set the trigger state for "wait for trigger"                     |
| FETC?                                                                                                                                                                                                                                                                                                                                                              | //Read the resulting measurement value                             |

- ◆ The **FETCh?** query does not erase measurements from the reading memory. You can send the query multiple times to retrieve the same data.
- ◆ You can store up to 1,000 measurements in the reading memory. If reading memory overflows, new measurements will overwrite the oldest measurements stored; the most recent measurements are always preserved. No error is generated, but the Reading Mem Ovfl bit (bit 14) is set in the Questionable Data Register's condition register (see Status System Introduction).
- ◆ The instrument clears all measurements from reading memory when the measurement configuration changes, or when any of these commands is executed:
  - INITiate
  - MEASure:<function>?
  - READ?
  - \*RST
  - SYSTem:PRESet

## 1.3 INITiate[:IMMediate]

Set the trigger state for "wait for trigger". Measurements will begin when the specified trigger conditions are satisfied following the receipt of the INITiate command. This command also clears the previous set of measurements from reading memory.

| Parameter                                                                                      | Typical Return                                 |
|------------------------------------------------------------------------------------------------|------------------------------------------------|
| (none)                                                                                         | (none)                                         |
| Set the trigger source for "wait for trigger", it can effectively receives the trigger signal: |                                                |
| TRIG:SOUR BUS                                                                                  | //Set the trigger source to trigger bus        |
| TRIG:COUN 10                                                                                   | //Set the trigger source for 10 times          |
| INIT                                                                                           | //Set the trigger state for "wait for trigger" |
| *TRG                                                                                           | //Send a trigger signal                        |
| FETCh?                                                                                         | //After measuring can read the measured memory |

- ◆ Storing measurements in reading memory with **INITiate** is faster than sending measurements to the instrument's output buffer using **READ?** (provided you do not send **FETCh?** until done). The INITiate command is also an "overlapped" command. This means that after executing INITiate, you can send other commands that do not affect the measurements.
- ◆ You can store up to 1,000 measurements in the reading memory. If reading memory overflows, new measurements will overwrite the oldest measurements stored; the most recent measurements are always preserved. No error is generated, but the Reading Mem Ovfl bit (bit 14) is set in the Questionable Data Register's condition register (see Status System Introduction).
- ◆ To retrieve the measurements from the reading memory, use **FETCh?**. Use **DATA:REMove?** or **R?** to read and erase all or part of the available measurements.
- ◆ The **ABORt** command may be used to return to idle.

## 1.4 OUTPut:TRIGger:SLOPe {POSitive|NEGative}

### OUTPut:TRIGger:SLOPe?

Selects the slope of the *voltmeter complete* output signal on the rear-panel VM Comp BNC connector.

| Parameter                                                                                                                                                                                                                                         | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| {POSitive NEGative}, default NEGative                                                                                                                                                                                                             | (none)         |
| Configure DC voltage measurements and make two measurements. The signal on the rear-panel <b>VM Comp</b> connector will output a positive pulse as each measurement is completed:<br>CONF:VOLT:DC 10<br>SAMP:COUN 2<br>OUTP:TRIG:SLOP POS<br>INIT |                |

- ◆ This parameter is set to its default value after a Factory Reset(\*RST) or Instrument Preset (SYSTem:PRESet).

## 1.5 R? [<max\_readings>]

Reads and erases all measurements from the reading memory up to the specified <max\_readings>. The measurements are read and erased from the reading memory starting with the oldest measurement first.

| Parameter                                                                 | Typical Return                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 to 10,000 readings<br>Default is all readings in memory                 | #247-1.06469770E-03,-1.08160033E-03,-1.22469433E-03<br>The "#2" means that the next 2 digits indicate how many characters will be in the returned memory string. These two digits are the "47" after the "#2". Therefore, the remainder of the string is 47 digits long:<br>-1.06469770E-03,-1.08160033E-03,-1.22469433E-03 |
| Read and remove the three oldest readings:<br>TRIG:COUN 3<br>INIT<br>R? 3 |                                                                                                                                                                                                                                                                                                                             |

- ◆ The R? and DATA:REMove? queries allow you to periodically remove measurements from the reading memory that would normally cause the reading memory to overflow.
- ◆ You can store up to 1,000 measurements in the reading memory. If reading memory overflows, new measurements will overwrite the oldest measurements stored; the most recent measurements are always preserved. No error is generated, but the Reading Mem Ovfl bit (bit 14) is set in the Questionable Data Register's condition register (see Status System Introduction).
- ◆ The instrument clears all measurements from reading memory when the measurement configuration changes, or when any of these commands is executed:  
INITiate  
MEASure:<function>?  
READ?  
\*RST  
SYSTem:PRESet

## 1.6 READ?

Read and erase measurement results from reading storage ,up to the specified < max\_readings >.This command reads the data will begin with the first measurement results.

| Parameter | Typical Return                                                   |
|-----------|------------------------------------------------------------------|
| (none)    | -1.23006735E-03,-1.30991641E-03,-1.32756530E-03, -1.32002814E-03 |

Transmission measurements from the reading memory:  
 TRIG:COUN 4  
 SAMP:COUN 1  
 READ?

- ◆ The FETch? query does not erase measurements from the reading memory. You can send the query multiple times to retrieve the same data.
- ◆ You can store up to 1,000 measurements in the reading memory of the T3DMM. If reading memory overflows, new measurements will overwrite the oldest measurements stored; the most recent measurements are always preserved. No error is generated, but the Reading Mem Ovfl bit (bit 14) is set in the Questionable Data Register's condition register .
- ◆ It is important to note that the following command will measurements to empty, leading to FETCh? The return value of the change:

```
INITiate
MEASure:<function>?
READ?
*RST
SYSTem:PRESet
```

## 1.7 SAMPlE:COUNT {<count>|MIN|MAX|DEF}

### SAMPlE:COUNT? [{MIN|MAX|DEF}]

Specifies the number of measurements (samples) the instrument will take per trigger.

| Parameter                                                                                                                                        | Typical Return                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1( default) to10,000                                                                                                                             | 1                                                                                              |
| Set a single trigger sampling frequency for 10 times, the back panel of the VM Comp BNC connector on the oscilloscope will only observe a pulse: |                                                                                                |
| SAMP:COUNT 10                                                                                                                                    | //Set the sampling frequency for 10 times                                                      |
| TRIG:COUNT 1                                                                                                                                     | //Set the trigger for 1 times                                                                  |
| TRIG:SOUR EXT;SLOP NEG                                                                                                                           | //Set the trigger source to the external trigger and trigger signal is set to the falling edge |
| OUTP:TRIG:SLOP POS                                                                                                                               | //Set the trigger output signal to rise                                                        |
| READ?                                                                                                                                            | //Start the wheel measurement and reading                                                      |

- ◆ You can use the specified sample count in conjunction with a trigger count (TRIGger:COUNT), which sets the number of triggers to be accepted before returning to the "idle" trigger state. The total number of measurements returned will be the product of the sample count and trigger count.
- ◆ You can store up to 10,000 measurements in the reading memory. If reading memory overflows, new measurements will overwrite the oldest measurements stored; the most recent measurements are always preserved. No error is generated, but the Reading Mem Ovfl bit (bit 14) is set in the Questionable Data Register's condition register .
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

## 1.8 UNIT:TEMPerature {C|F|K}

### UNIT:TEMPerature?

Selects the units (°C, °F or Kelvin) to be used for all temperature measurements.

| Parameter                                                                                          | Typical Return |
|----------------------------------------------------------------------------------------------------|----------------|
| {C F K},default C                                                                                  | C, F or K      |
| Set to return the result in °F                                                                     |                |
| UNIT:TEMP F //Set the temperature measurement unit in °F                                           |                |
| MEAS:TEMP? //Recovery temperature default configuration and read a set of temperature measurements |                |

- ◆ The command also accepts CEL or FAR, but the query returns C or F.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

# System Command

## 2.1 CALCulate Subsystem

### 2.1.1 CALCulate:CLEar[:IMMEDIATE]

Clears all limits, histogram data, statistics and measurements.

| Parameter                                                                                    | Typical Return |
|----------------------------------------------------------------------------------------------|----------------|
| (none)                                                                                       | (none)         |
| Clear all limits, histogram data, statistics, and measurements:<br>CALC:CLE:IMM CALC:CLE:IMM |                |

- ◆ The items cleared by this command are cleared synchronously, so that the histogram, statistics, and limit data all restart at the same time that measurements restart.

## 2.2 CALCulate:LIMit Subsystem

This subsystem specifies measurements and indicates when a limit has been exceeded.

### Example

The following example enables limit testing of 100 DC voltage measurements and indicates whether measurements were outside the range of 2.4 to 3.6 V. Measurements above 3.6 V will set bit 12 (Upper Limit Failed) of the Questionable Status Register; measurements below 2.4 V will set bit 11 (Lower Limit Failed).

```
*CLS
CONF:VOLT 10
SAMP:COUN 100
CALC:LIM:LOW 2.4
CALC:LIM:UPP 3.6
CALC:LIM:STAT ON
INIT
*WAI
STAT:QUES?
Typical Response: +4096 (at least one measurement was above the upper limit)
```

### Command Summary

```
CALCulate:LIMit:CLEar[:IMMEDIATE]
CALCulate:LIMit:{LOWER|UPPER}[:DATA]
CALCulate:LIMit[:STATe]
```

## **2.2.1 CALCulate:LIMit:CLEar[:IMMEDIATE]**

Clears front-panel indications of limits being exceeded and clears bit 11 ("Lower Limit Failed") and bit 12 ("Upper Limit Failed") in the Condition Register of the Questionable Data Register event register group. The corresponding event register bits are unaffected.

A condition register continuously monitors the state of the instrument. Condition register bits are updated in real time; they are neither latched nor buffered.

An event register is a read-only register that latches events from the condition register. While an event bit is set, subsequent events corresponding to that bit are ignored.

| Parameter                                                      | Typical Return |
|----------------------------------------------------------------|----------------|
| (none)                                                         | (none)         |
| Clear the limit test results:<br>CALC:LIM:CLE CALC:LIM:CLE:IMM |                |

- ◆ This command does not clear measurements in reading memory.
- ◆ The instrument clears front-panel indications of limits being exceeded and clears bits 11 and 12 in the Questionable Data Register when the measurement function changes, or when any of the executed:  
CALCulate:LIMit:STATe ON  
INITiate  
MEASure:<function>?  
READ?  
CALCulate:LIMit:CLEar  
\*RST  
SYSTem:PRESet
- ◆ To clear statistics, limits, histogram data, and measurement data, use CALCulate:CLEar[:IMMEDIATE].

**2.2.2 CALCulate:LIMit:{LOWER|UPPer}[:DATA] {<value>}|MIN|MAX|DEF}****CALCulate:LIMit:{LOWER|UPPer}[:DATA]? [{MIN|MAX|DEF}]**

Sets an upper or lower limit.

| Parameter            | Typical Return  |
|----------------------|-----------------|
| -1.0E+15 to -1.0E-15 | +1.00000000E+00 |
| or                   |                 |
| 0.0(default)         |                 |
| or                   |                 |
| +1.0E-15 to 1.0E+15  |                 |
| See Example.         |                 |

- ◆ You can assign a lower limit, an upper limit or both. Do not set the lower limit above the upper limit. If the limit set is higher than the upper limit, the limit value is set to the same limit will force the same value.
- ◆ Limit crossing: If a measurement is less than the specified lower limit, bit 11 ("Lower Limit Failed") is set in the Questionable Data Condition Register. A measurement greater than the specified upper limit sets bit 12 ("Upper Limit Failed"). See STATus Subsystem Introduction for further information.
- ◆ A CONFigure command resets both limits to 0.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

### 2.2.3 CALCulate:LIMit[:STATe]{ON|1|OFF|0}

#### CALCulate:LIMit[:STATe]?

Enables or disables limit testing.

| Parameter                 | Typical Return    |
|---------------------------|-------------------|
| {ON 1 OFF 0}, default OFF | 0 (OFF) or 1 (ON) |
| See Example.              |                   |

- ◆ The instrument clears front-panel indications of limits being exceeded and clears bits 11 and 12 in the Questionable Data Register when the measurement function changes, or when any of the following commands is executed:

CALCulate:LIMit:STATe ON  
INITiate  
MEASure:<function>?  
READ?  
CALCulate:LIMit:CLEar  
\*RST  
SYSTem:PRESet

- ◆ The instrument turns this setting OFF when the measurement function is changed or after **\*RST** or **SYSTem:PRESet**.

## 2.3 CALCulate:TRANSform:HISTogram Subsystem

The HISTogram subsystem configures the histogram display. The instrument clears histogram data when the measurement function changes and when any of the following commands is sent:

```
CALCulate:TRANSform:HISTogram:CLEar[:IMMEDIATE]
CALCulate:TRANSform:HISTogram:POINts
CALCulate:TRANSform:HISTogram:RANGE:AUTO
CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}
CALCulate:TRANSform:HISTogram[:STATe]
INITiate[:IMMEDIATE]
MEASure:<function>?
READ?
*RST
SYSTem:PRESet
```

### Command Summary

```
CALCulate:TRANSform:HISTogram:ALL?
CALCulate:TRANSform:HISTogram:CLEar[:IMMEDIATE]
CALCulate:TRANSform:HISTogram:COUNT?
CALCulate:TRANSform:HISTogram:DATA?
CALCulate:TRANSform:HISTogram:POINts
CALCulate:TRANSform:HISTogram:RANGE:AUTO
CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}
CALCulate:TRANSform:HISTogram[:STATe]
```

### Example

This example enables an automatically scaled, 100-bin histogram of 1000 DCV measurements. It then returns the computed histogram, including the lower and upper range values, the total measurement count, and the bin data.

```
CONF:VOLT:DC 10,0.001
```

```
SAMP:COUN 1000
```

```
CALC:TRAN:HIST:RANG:AUTO ON
```

```
CALC:TRAN:HIST:POIN 100
```

```
CALC:TRAN:HIST:STAT ON
```

```
INIT
```

```
*WAI
```

```
CALC:TRAN:HIST:ALL?
```

Typical Response: +9.99383828E+00,+1.00513398E+01,+1000,<102 bin counts>

Note: The above response indicates 102 bin counts because the histogram includes bins for values below and above the histogram range.

**2.3.1 CALCulate:TRANSform:HISTogram:ALL?****CALCulate:TRANSform:HISTogram:DATA?**

The ALL form of the query returns a comma-separated list of the lower and upper range values, the number of measurements, and the bin data collected since the last time the histogram data was cleared. The DATA form returns only the bin data.

| Parameter | Typical Return |
|-----------|----------------|
| (none)    | See Example.   |
|           | See Example.   |

- ◆ The bin data includes the following, in order:
  - The number of measurements less than the lower range value .
  - The number of measurements in the each of the bins, starting at the lower range value bin
  - The number of measurements greater than the upper range value
- ◆ Range values are real numbers returned in the form +1.00000000E+00. The number of measurements and bin data are signed, positive integers returned in the form +100.

### 2.3.2 CALCulate:TRANSform:HISTogram:CLEar[:IMMEDIATE]

Clears the histogram data and restarts histogram ranging if it is enabled (CALCulate:TRANSform:HISTogram:RANGE:AUTO ON).

| Parameter                                       | Typical Return |
|-------------------------------------------------|----------------|
| ( none )                                        | ( none )       |
| Clear the histogram data:<br>CALC:TRAN:HIST:CLE |                |

- ◆ This command does not clear measurements in reading memory.
- ◆ To clear statistics, limits, histogram data, and measurement data, use CALCulate:CLEar[:IMMEDIATE].

### 2.3.3 CALCulate:TRANSform:HISTogram:COUNT?

Returns the number of measurements collected since the last time the histogram was cleared.

| Parameter                                                                                        | Typical Return |
|--------------------------------------------------------------------------------------------------|----------------|
| ( none )                                                                                         | +96            |
| Return the number of measurements used to compute the current histogram:<br>CALC:TRAN:HIST:COUN? |                |

**2.3.4 CALCulate:TRANSform:HISTogram:POINts{<value>|MIN|MAX|DEF}****CALCulate:TRANSform:HISTogram:POINts?[{MIN|MAX|DEF}]**

Sets the number of bins between the lower and upper range values for the histogram. Two additional bins always exist: one for measurements below the lower range and one for measurements above the upper range.

| Parameter                                          | Typical<br>Return |
|----------------------------------------------------|-------------------|
| {10 20 40 100 200 400 MIN MAX DEF}, default<br>100 | +100              |
| See Example.                                       |                   |

- ◆ You can specify the lower and upper range values using CALCulate:TRANSform:HISTogram:RANGE: {LOWer|UPPer}. Lower and upper range values are computed automatically if CALCulate:TRANSform:HISTogram:RANGE:AUTO is ON.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or InstrumentPreset (SYSTem:PRESet).

**2.3.5 CALCulate:TRANSform:HISTogram:RANGE:AUTO{ON|1|OFF|0}****CALCulate:TRANSform:HISTogram:RANGE:AUTO?**

Enables or disables automatic selection of the histogram's lower and upper range values.

| Parameter                 | Typical Return |
|---------------------------|----------------|
| {ON 1 OFF 0} , default ON | 0 (OFF) or 1   |
| (ON) See Example.         |                |

- ◆ **ON:** the instrument set the lower and upper range values automatically.
- ◆ **OFF:** the lower and upper range values are specified by CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}.
- ◆ Setting the lower or upper range value (CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}) disables automatic selection of the lower and upper range values (CALCulate:TRANSform:HISTogram:RANGE:AUTO OFF).
- ◆ The instrument restarts automatic range value selection (if enabled) when INITiate, MEASure? or READ? is executed.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

## 2.3.6

**CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}{<value>|MIN|MAX|DEF}**

**CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}?[{MIN|MAX|DEF}]**

Sets the histogram's lower and upper range values. Setting the lower or upper range value. (CALCulate:TRANSform:HISTogram:RANGE:{LOWER|UPPER}) disables automatic selection of the lower and upper range values (CALCulate:TRANSform:HISTogram:RANGE:AUTO OFF).

| Parameter                                                                 | Typical Return  |
|---------------------------------------------------------------------------|-----------------|
| -1.0E+15 to -1.0E-15,<br>or<br>0.0 (default)<br>or<br>+1.0E-15 to 1.0E+15 | +1.00000000E+06 |
| See Example.                                                              |                 |

- ◆ If automatic range value selection is enabled (CALCulate:TRANSform:HISTogram:RANGE:AUTO ON), the query returns the computed range value. If no histogram data exists, 9.91E37 (Not a Number) is returned.
- ◆ Lower and upper range values are computed automatically if CALCulate:TRANSform:HISTogram:RANGE:AUTO is ON.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

**2.3.7 CALCulate:TRANSform:HISTogram[:STATe]{ON|1|OFF|0}****CALCulate:TRANSform:HISTogram[:STATe]?**

Enables or disables histogram computation.

| Parameter                 | Typical Return    |
|---------------------------|-------------------|
| {ON 1 OFF 0}, default OFF | 0 (OFF) or 1 (ON) |
| See Example.              |                   |

- ◆ The instrument turns this setting OFF when the measurement function is changed or after \*RST or SYSTem:PRESet.

## 2.4 CALCulate:SCALe Subsystem

This subsystem scales ACV and DCV measurements.

### Command Summary

CALCulate:SCALe:DB:REFerence  
CALCulate:SCALe:DBM:REFerence  
CALCulate:SCALe:FUNCtion  
CALCulate:SCALe:REFerence:AUTO  
CALCulate:SCALe[:STATe]

### 2.4.1 CALCulate:SCALe:DB:REFerence {<reference>|MIN|MAX|DEF}

**CALCulate:SCALe:DB:REFerence? [{MIN|MAX}]**

Stores a relative value in the multimeter's dB Relative Register, which is used for the dB function in CALCulate:SCALe:FUNCtion. When the dB function is enabled, this value will be subtracted from the each voltage measurement after the measurement is converted to dBm.

Note: This command applies only to ACV and DCV measurement functions.

| Parameter                                                       | Typical Return  |
|-----------------------------------------------------------------|-----------------|
| -200.0 dBm to +200.0 dBm, default 0                             | +5.00000000E+02 |
| Enable dB scaling with a -10 dB reference reference resistance: |                 |
| CALC:SCAL:DB:REF -10.0                                          |                 |
| CALC:SCAL:FUNC DB                                               |                 |
| CALC:SCAL:STAT ON                                               |                 |

- ◆ Specifying a reference value disables automatic reference selection (CALCulate:SCALe:REFerence:AUTO OFF).
- ◆ The dB relative value parameter is relative to the dBm reference set with CALCulate:SCALe:DBM:REFerence.
- ◆ The instrument sets the reference value to 0.0 with automatic reference selection enabled after a Factory Reset (\*RST), an Instrument Preset (SYSTem:PRESet), a change in math function, or a change in measurement function.

**2.4.2 CALCulate:SCALe:DBM:REFerence {<reference>|MIN|MAX|DEF}****CALCulate:SCALe:DBM:REFerence? [{MIN|MAX}]**

Selects the reference resistance for converting voltage measurements to dBm. This reference value affects the dBm and dB scaling functions.

Note: This command applies only to ACV and DCV measurement functions.

| Parameter                                                                                         | Typical Return  |
|---------------------------------------------------------------------------------------------------|-----------------|
| 50, 75, 93, 110, 124, 125, 135, 150, 250, 300, 500, 600((default)), 800, 900, 1000, 1200 or 8000Ω | +6.00000000E+02 |

Enable dBm scaling with a reference resistance of 600 Ω:  
CALC:SCAL:DBM:REF 600  
CALC:SCAL:FUNC DBM  
CALC:SCAL:STAT ON

- ◆ The instrument sets the reference value to its default value after a Factory Reset (\*RST), an Instrument Preset (SYSTem:PRESet), a change in math function, or a change in measurement function.

### **2.4.3 CALCulate:SCALe:FUNCTION {DB|DBM}**

#### **CALCulate:SCALe:FUNCTION?**

Selects the operation that will be performed by the scaling function:

- ◆ DB performs a relative dB computation. The result will be the difference between the input signal and the stored DB relative value (CALCulate:SCALe:DB:REFerence), with both values converted to dBm (dB = measurement indBm – relative value in dBm).
- ◆ DBM performs a dBm computation. The result is logarithmic and is based on a calculation of power delivered to a reference resistance (CALCulate:SCALe:DBM:REFerence), relative to 1 milliwatt. (dBm =  $10 \times \log_{10}$  (measurement 2 / reference resistance / 1 mW)).

**Note:** This command applies only to ACV and DCV measurement functions.

| <b>Parameter</b>                                                         | <b>Typical Return</b> |
|--------------------------------------------------------------------------|-----------------------|
| {DB DBM}                                                                 | DB or DBM             |
| Enable the DB scaling function referenced to the next measurement taken: |                       |
| CALC:SCAL:FUNC DBM                                                       |                       |
| CALC:SCAL:STAT ON                                                        |                       |

- ◆ For the dB function, the reference value can be automatically selected using the first measurement converted to dBm as the reference value (see CALCulate:SCALe:REFerence:AUTO), or it can be specified by CALCulate:SCALe:DB:REFerence.
- ◆ Scaling function results must be in the range of -1.0E+24 to -1.0E-24, or +1.0E-24 to 1.0E+24. Results outside these limits will be replaced with -9.9E37 (negative infinity), 0, or 9.9E37 (positive infinity).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), an Instrument Preset (SYSTem:PRESet).

## 2.4.4 CALCulate:SCALe:REFerence:AUTO {ON|1|OFF|0}

### CALCulate:SCALe:REFerence:AUTO?

Enables or disables automatic reference selection for the dB scaling functions

Note: This command applies only to ACV and DCV measurement functions.

| Parameter                | Typical Return |
|--------------------------|----------------|
| {ON 1 OFF 0}, default ON | 0(OFF)or1(ON)  |

Enable the DB function with automatic reference selection and use the first measurement as the reference value:  
 CALC:SCAL:DBM:REF 50  
 CALC:SCAL:FUNC DB  
 CALC:SCAL:REF:AUTO ON  
 CALC:SCAL:STAT ON  
 READ?

- ◆ **ON:** the first measurement made will be used as the reference for all subsequent measurements, and automatic reference selection will be disabled:
  - For the dB scaling function, the first measurement is converted to dBm, and CALCulate:SCALe:DB:REFerence is set to the result.
- ◆ **OFF:** CALCulate:SCALe:DB:REFerence specifies the reference for DB scaling.
- ◆ The instrument enables automatic reference selection when the scaling function is enabled (CALCulate:SCALe:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), an Instrument Preset (SYSTem:PRESet).

## 2.4.5 CALCulate:SCALe[:STATe] {ON|1|OFF|0}

### CALCulate:SCALe[:STATe]?

Enables or disables the scaling function.

Note :This command applies only to ACV and DCV measurement functions.

| Parameter                 | Typical Return    |
|---------------------------|-------------------|
| {ON 1 OFF 0} , default ON | 0 (OFF) or 1 (ON) |

Enable the DB function with automatic reference selection and use the first measurement as the reference value:

CALC:SCAL:DBM:REF 50  
CALC:SCAL:FUNC DB  
CALC:SCAL:REF:AUTO ON  
CALC:SCAL:STAT ON  
READ?

- ◆ Enabling the scaling function also enables automatic null valueselection (CALCulate:SCALe:REFerence:AUTO).
- ◆ The instrument turns this setting OFF when the measurement function is changed or after \*RST or SYSTem:PRESet.

## 2.5 CALCulate:AVERage Subsystem

This subsystem calculates measurement statistics.

### Command Summary

CALCulate:AVERage[:STATe]  
CALCulate:AVERage:CLEar[:IMMEDIATE]  
CALCulate:AVERage:ALL?  
CALCulate:AVERage:AVERage?  
CALCulate:AVERage:COUNT?  
CALCulate:AVERage:MAXimum?  
CALCulate:AVERage:MINimum?  
CALCulate:AVERage:PTPeak?  
CALCulate:AVERage:SDEViation?

## 2.5.1 CALCulate:AVERage[:STATe]{ON|1|OFF|0}

### CALCulate:AVERage[:STATe]?

Enables or disables statistics computation.

| Parameter                 | Typical Return    |
|---------------------------|-------------------|
| {ON 1 OFF 0}, default OFF | 0 (OFF) or 1 (ON) |

Return the statistics of 100 frequency measurements:  
CONF:FREQ  
SAMP:COUN 100  
CALC:AVER:STAT ON  
INIT  
CALC:AVER:ALL?  
Typical Response:  
-4.10466677E-04,+3.13684184E-04,+1.75743178E-02,-6.74799085E-04

- ◆ Statistics are cleared when the measurement function changes or when any of these commands is executed:  
CALCulate:AVERage:STATe ON  
CALCulate:AVERage:CLEar  
INITiate  
MEASure:<*function*>?  
READ?  
\*RST  
SYSTem:PRESet
- ◆ The instrument turns this setting OFF when the measurement function is changed or after \*RST or SYSTem:PRESet.

## 2.5.2 CALCulate:AVERage:ALL?

**CALCulate:AVERage:AVERage?**

**CALCulate:AVERage:COUNT?**

**CALCulate:AVERage:MAXimum?**

**CALCulate:AVERage:MINimum?**

**CALCulate:AVERage:PTPeak?**

**CALCulate:AVERage:SDEViation?**

The CALCulate:AVERage:ALL? query returns the arithmetic mean (average), standard deviation, minimum value and maximum value of all measurements taken since the statistics were last cleared. The count and peak-to-peak statistics are not returned by CALCulate:AVERage:ALL?.

The other six queries listed above return individual values.

| Parameter                                                       | Typical Return |
|-----------------------------------------------------------------|----------------|
| (none)                                                          | (see below)    |
| Return the statistics of 100 frequency measurements:            |                |
| CONF:FREQ                                                       |                |
| SAMP:COUN 100                                                   |                |
| CALC:AVER:STAT ON                                               |                |
| INIT                                                            |                |
| CALC:AVER:ALL?                                                  |                |
| Typical Response:                                               |                |
| -4.10466677E-04,+3.13684184E-04,+1.75743178E-02,-6.74799085E-04 |                |

- ◆ Statistics are cleared when the measurement function changes or when any of these commands is executed:
   
CALCulate:AVERage:STATe ON
   
CALCulate:AVERage:CLEar
   
INITiate
   
MEASure:<function>?
   
READ?
   
\*RST
   
SYSTem:PRESet
- ◆ All values except the COUNT are returned in the form +1.23450000E+01. The count is as a signed, positive integer: +129.
- ◆ When dB or dBm scaling is used, the CALC:AVER:AVER and CALC:AVER:SDEV queries return +9.91000000E+37 (not a number).

### 2.5.3 CALCulate:AVERage:CLEar[:IMMEDIATE]

Clears all computed statistics: minimum, maximum, average, peak-to-peak, count and standard deviation.

| Parameter                                           | Typical Return |
|-----------------------------------------------------|----------------|
| (none)                                              | (none)         |
| Clear the stored statistical data:<br>CALC:AVER:CLE |                |

- ◆ This command does not clear measurements in reading memory.
- ◆ Statistics are cleared when the measurement function changes or when any of these commands is executed:  
CALCulate:AVERage:STATe ON  
CALCulate:AVERage:CLEar  
INITiate  
MEASure:<*function*>?  
READ?  
\*RST  
SYSTem:PRESet
- ◆ To clear statistics, limits, histogram data, and measurement data, use CALCulate:CLEar[:IMMEDIATE].

## 2.6 CONFigure Subsystem

The CONFigure commands are the most concise way to configure measurements. These commands use default measurement configuration values. However, these commands do not automatically start measurements, so you can modify measurement attributes before initiating the measurement.

Use INITiate or READ? to initiate measurements.

### Command Summary

CONFigure?  
 CONFigure:CONTinuity  
 CONFigure:CURRent:{AC|DC}  
 CONFigure:DIODe  
 CONFigure:{FREQuency|PERiod}  
 CONFigure:{RESistance|FRESistance}  
 CONFigure:TEMPerature  
 CONFigure[:VOLTage]:{AC|DC}  
 CONFigure[:VOLTage][:DC]:RATio  
 CONFigure:CAPacitance

### Default Settings for the CONFigure Command

The CONFigure commands select the function, range and sampling rate in one command. All other parameters are set to their default values (below). If no range and sampling speed settings, which will restore the default value.

| Measurement Parameter | Default Setting |
|-----------------------|-----------------|
| Autozero              | OFF             |
| Range                 | AUTO            |
| Samples per Trigger   | 1 sample        |
| Trigger Count         | 1 trigger       |
| Trigger Delay         | 1 trigger       |
| Trigger Source        | Immediate       |
| Trigger Slope         | NEGative        |
| Math Functions        | Disabled        |

### Using CONFigure

The following example uses CONFigure and READ? to make an externally-triggered measurement. The CONFigure command configures DC voltage measurements but does not place the instrument in the "wait-for-trigger" state.

The READ? query places the instrument in the "wait-for-trigger" state, initiates a measurement when the rear-panel **Ext Trig** input is pulsed (low by default), stores the measurement in reading memory, and transfers the measurement to the instrument's output buffer. The default range (auto range) and resolution (0.3 PLC) are used for the measurement.

## Remote Manual

---

```
CONF:VOLT:DC
TRIG:SOUR EXT
READ?
```

Typical Response: -5.21391630E-04

The following example is like the previous one, but it uses INITiate and FETCh? instead of READ?. The INITiate command places the instrument in the "wait-for-trigger" state, triggers a measurement when the rear-panel **Ext Trig** input is pulsed (low by default), and sends the measurement to reading memory. The FETCh? query transfers the measurement from reading memory to the instrument's output buffer.

```
CONF:VOLT:DC
TRIG:SOUR EXT
INIT
FETC?
```

Typical Response: -5.21205366E-04

Storing measurements in reading memory with INITiate is faster than sending measurements to the instrument's output buffer using READ? (provided you do not send FETCh? until done). The INITiate command is also an "overlapped" command. This means that after executing INITiate, you can send other commands that do not affect the measurements. This allows you to check for data availability before initiating a read attempt that might otherwise time out. Note that the FETCh? query waits until all measurements are complete to terminate. You can store up to 1,000 measurements in the reading memory of the SDM3055.

The following example configures the instrument for 2-wire resistance measurements, triggers the instrument to make one measurement using INITiate, and stores the measurement in reading memory. The 10 k $\Omega$  range is selected.

```
CONF:RES 10000
INIT
FETC?
```

Typical Response:+5.21209585E+04

## 2.6.1 CONFigure?

Returns a quoted string indicating the present function, range, and resolution. The short form of the function name (CURR:AC, FREQ) is always returned.

| Parameter | Typical Return                                      |
|-----------|-----------------------------------------------------|
| (none)    | "VOLT +2.0000000E-01"                               |
|           | Return the present function, range, and resolution. |
| CONF?     |                                                     |

## 2.6.2 CONFigure:CONTInuity

Sets all measurement parameters and trigger parameters to their default values for continuity measurements.

| Parameter | Typical Return                                                                                                                                                                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (none)    | (none)                                                                                                                                                                                                        |
|           | Configure the instrument for continuity measurements. Then make a measurement using an external trigger with positive slope (rising edge) and read the measurement: CONF:CONT TRIG:SOUR EXT;SLOP POS<br>READ? |

- ◆ The range and resolution are fixed at 1 kΩ for continuity tests (a 2-wire resistance measurement).
- ◆ The instrument beeps (if the beeper is enabled) for each measurement less than or equal to the continuity threshold (The threshold can be passed by [:SENSe]:CONTInuity:THReshold:VALue command ), and the actual resistance measurement appears on the display.
- ◆ From threshold to 2 kΩ, the instrument displays the actual resistance measurement with no beep. Above 2 kΩ, the instrument displays "OPEN" with no beep.
- ◆ The FETCh?, READ?, and MEASure:CONTInuity? queries return the measured resistance, regardless of its value.
- ◆ Use READ? or INITiate to start the measurement.

### 2.6.3 CONFigure:CURRent:{AC|DC} [{<range>}|AUTO|MIN|MAX|DEF}]

Sets all measurement parameters and trigger parameters to their default values for AC or DC current measurements. Also specifies the range and resolution through the incoming parameters.

| Parameter                                                                                                                                                                           | Typical Return |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : 200uA 2mA 20mA 200mA 2A 10A AUTO} ,<br>default AUTO (autorange). The 200uA and 2mA ranges<br>can be used in DC current mode only. The minimum<br>range in AC mode is 20mA | (none)         |
| <p>Example of two ac current measurements. Two measurements and readings:</p> <pre>CONF:CURR:AC 2 SAMP:COUN 2 READ? Typical Response : +4.32133675E-04,+4.18424606E-04</pre>        |                |

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ Use READ? or INITiate to start the measurement.

## 2.6.4 CONFigure:DIODE

Sets all measurement parameters and trigger parameters to their default values for diode tests.

| Parameter                                              | Typical Return |
|--------------------------------------------------------|----------------|
| ( none )                                               | ( none )       |
| Configure, make, and read a default diode measurement: |                |
| CONF:DIOD                                              |                |
| READ?                                                  |                |
| Typical Response : +1.32130000E-01                     |                |

- ◆ The range and resolution are *fixed* for diode tests: the range is 2 VDC.
- ◆ The FETCh?, READ?, and MEASure:DIODE? queries return the measured voltage, regardless of its value.
- ◆ Use READ? or INITiate to start the measurement.

## 2.6.5 CONFigure:{FREQuency|PERiod}

Sets all measurement parameters and trigger parameters to their default values in the frequency/period mode.

| Parameter                                                   | Typical Return |
|-------------------------------------------------------------|----------------|
| (none)                                                      | ( none )       |
| Configure, make, and read a default frequency measurement : |                |
| CONF:FREQ                                                   |                |
| READ?                                                       |                |
| Typical Response : +7.79645018E+01                          |                |

- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "+9.90000000E+37" from the remote interface.

## 2.6.6 CONFigure:{RESistance|FRESistance}

**[{<range>|AUTO|MIN|MAX|DEF}]**

Sets all measurement parameters and trigger parameters to their default values for 4-wire (FRESistance) or 2-wire (RESistance) resistance measurements. Also specifies the range and resolution.

Below is for **T3DMM5-5, T3DMM6-5 and T3DMM6-5-SC**

| Parameter                                                             | Typical Return |
|-----------------------------------------------------------------------|----------------|
| <range> : {200 Ω 2 kΩ 20 kΩ 200 kΩ 1 MΩ 10 MΩ 100 MΩ} , AUTO(default) | ( none )       |

Configure 4-wire resistance measurements using the 200 Ω range with default resolution. Make and read two measurements  
CONF:FRES 200  
SAMP:COUN 2  
READ?  
Typical Response : +6.71881065E+01,+6.83543086E+01

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ Use READ? or INITiate to start the measurement.

Below is the table for the T3DMM4-5

| Parameters for the T3DMM4-5                                         | Typical Return |
|---------------------------------------------------------------------|----------------|
| <range>: {600 Ω 6 kΩ 60 kΩ 600 kΩ 6 MΩ 60 MΩ 100 MΩ}, AUTO(default) | ( none )       |

Configure 4-wire resistance measurements using the 600 Ω range with default resolution. Make and read two measurements  
CONF:FRES 600  
SAMP:COUN 2  
READ?  
Typical Response: +6.71881065E+01,+6.83543086E+01

## 2.6.7 CONFigure:TEMPerature [{RTD|THER|DEFault}[,{<type>|DEFault}]]

Sets all measurement parameters and trigger parameters to their default values in temperature measurements.

| Parameter                                                                                                                                                        | Typical Return |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <probe_type> : {RTD THER} , default THER. The default command can only choose the built-in sensor manufacturers, does not support user defined sensor selection. | none           |
| <type> : PT100 (for RTD only choice) or {BITS90 EITS90 JITS90 KITS90 NITS90 RITS90 SITS90 TITS90} (choose the sensor for THER)                                   |                |
| Configuration RTD measurement. Then read measurement results:<br>CONF:TEMP RTD,PT100<br>READ?<br>Typical Response : -2.0000000E+02                               |                |

- ◆ To change temperature units, use UNIT:TEMPerature.
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ Use READ? or INITiate to start the measurement.

**2.6.8 CONFigure[:VOLTage]:{AC|DC} [{<range>}|AUTO|MIN|MAX|DEF]**

Sets all measurement parameters and trigger parameters to their default values for AC or DC voltage measurements. Also specifies the stalls through the incoming parameters. The table below is for the T3DMM5-5, T3DMM6-5 and T3DMM6-5-SC

| Parameters for the T3DMM5-5 and T3DMM6-5(-SC)                                                                                                                                              | Typical Return |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {200 mV 2 V 20 V 200 V 1000 V(DC)/750V(AC)} ,<br>default AUTO (autorange)                                                                                                        | ( none )       |
| Configure AC voltage measurements using the 200 V range. Make and read two measurements:<br>CONF:VOLT:AC 200<br>SAMP:COUN 2<br>READ?<br>Typical Response : +2.43186951E-02,+2.56896019E-02 |                |

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ Use READ? or INITiate to start the measurement.

The table below is for the T3DMM4-5

| Parameters for the T3DMM4-5                                                                                                                                                               | Typical Return |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range>: {600 mV 6 V 60 V 600 V 1000 V(DC)/750V(AC)} ,<br>Default AUTO (autorange)                                                                                                        | ( none )       |
| Configure AC voltage measurements using the 600 V range. Make and read two measurements:<br>CONF:VOLT:AC 600<br>SAMP:COUN 2<br>READ?<br>Typical Response: +2.43186951E-02,+2.56896019E-02 |                |

## 2.6.9 CONFigure:CAPacitance[{:<range>}|AUTO|MIN|MAX|DEF]

Sets all measurement parameters and trigger parameters to their default values for capacitance measurement. Also specifies the stalls through the incoming parameters. The table below is for the T3DMM6-5 and T3DMM6-5-SC

| Parameters for the T3DMM6-5 and T3DMM6-5-SC                                                                                                                                                  | Typical Return |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {2nF 20nF 200nF 2uF  20uF <br>200uF 2mf 20mf 100mf} , default AUTO (autorange)                                                                                                     | ( none )       |
| Configure capacitance measurement using the 2uF range. Make and read two measurements:<br><br>CONF:CAP 2uF<br>SAMP:COUN 2<br>READ?<br><br>Typical Response : +7.26141264E-10,+7.26109188E-10 |                |

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ Use READ? or INITiate to start the measurement.

The table below is for the T3DMM4-5 and T3DMM5-5

| Parameters for the T3DMM4-5 and T3DMM5-5                                                                                                                                                    | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range>: {2nF 20nF 200nF 2uF  20uF  200uF 10000uF},<br>default AUTO (autorange)                                                                                                             | ( none )       |
| Configure capacitance measurement using the 2uF range. Make and read two measurements:<br><br>CONF:CAP 2uF<br>SAMP:COUN 2<br>READ?<br><br>Typical Response: +7.26141264E-10,+7.26109188E-10 |                |

## 2.7 DATA Subsystem

This subsystem allows you to configure and remove data from reading memory. The instrument clears all measurements from reading memory when the measurement configuration changes, or when any of these commands is executed:

INITiate  
MEASure:<*function*>?  
READ?  
\*RST  
SYSTem:PRESet

### Command Summary

DATA:LAST?  
DATA:POINts?  
DATA:POINts:EV  
ENt:THRehold  
DATA:REMove?

### 2.7.1 DATA:LAST?

Returns the last measurement taken. You can execute this query at any time, even during a series of measurements.

| Parameter                                   | Typical Return                                                                                                                      |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ( none )                                    | One measurement with units. If no data is available, 9.91E37 (Not a Number) is returned with units<br>Example : -4.79221344E-04 VDC |
| Return the last measurement :<br>DATA:LAST? |                                                                                                                                     |

## 2.7.2 DATA: POINts?

Returns the total number of measurements currently in reading memory. You can execute this query at any time, even during a series of measurements.

| Parameter                                                                | Typical Return |
|--------------------------------------------------------------------------|----------------|
| ( none )                                                                 | +20            |
| Return the number of measurements in reading memory:DATA:POIN?DATA:POIN? |                |

You can store up to 1,000 measurements in the reading memory.

## 2.7.3 DATA:REMove?<num\_readings> [,WAIT]

Reads and erases <num\_readings> measurements from the reading memory. If fewer than <num\_readings> measurements are available, the query will return an error unless the WAIT parameter is specified, in which case the query will wait until <num\_readings> measurements are available.

| Parameter                                                                        | Typical Return                                                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1~10000                                                                          | -4.55379486E-04,-4.55975533E-04,-4.56273556E-04,<br>-4.53591347E-04,-4.55379486E-04 |
| Read and erase the five oldest readings from reading memory: :<br>DATA:REMove? 5 |                                                                                     |

- ◆ The R? and DATA:REMove? queries allow you to periodically remove measurements from the reading memory that would normally cause the reading memory to overflow.

## 2.8 MEASure Subsystem

The MEASure queries are the easiest way to program measurements because they always use default measurement parameters. You set the function, range, and resolution in one command, but you cannot change other parameters from their default values. The results are sent directly to the instrument's output buffer.

**Note:** A MEASure query is functionally equivalent to sending CONFigure followed immediately by READ?. The difference is that CONFigure commands allow you to change parameters between the CONFigure and the READ?

### Command Summary

MEASure:CONTinuity?

MEASure:CURRent:{AC|DC}?

MEASure:DIODe?

MEASure:{FREQuency|PERiod}?

MEASure:{RESistance|FRESistance}?

MEASure:TEMPerature?

MEASure[:VOLTage]:{AC|DC}?

MEASure:CAPacitance?

MEASure[:VOLTage][:DC]:RATio

### Default Settings for MEASure?

With the MEASure? queries, you can select the function, range and resolution in one command. All other parameters are set to their default values (below).

| Parameter           | Default Setting |
|---------------------|-----------------|
| OFF                 | OFF             |
| Range               | AUTO            |
| Samples per Trigger | 1 sample        |
| Trigger Count       | 1 trigger       |
| Trigger Delay       | Automatic delay |
| Trigger Source      | Immediate       |
| Trigger Slope       | NEGative        |
| Math Functions      | Disabled        |

### Using the MEASure? Query

The following example configures DC voltage measurements, internally triggers the instrument to take a measurement, and reads the measurement. The default range (autorange) and resolution (10 PLC) are used for the measurement.

MEAS:VOLT:DC?

Typical Response: +4.23450000E-03

The following example configures the instrument for 2-wire resistance measurements, triggers the instrument to take a measurement, and reads the measurement with the 2kΩ range.

MEAS:RES? 2000

Typical Response: +3.27150000E+02

### **2.8.1 MEASure:CONTinuity?**

Sets all measurement parameters and trigger parameters to their default values for continuity test and immediately triggers a measurement. The results are sent directly to the instrument's output buffer.

| Parameter | Typical Return  |
|-----------|-----------------|
| ( none )  | +9.84739065E+02 |

Configure the instrument for continuity measurements. Then make and read one measurement:  
MEAS:CONT?

- ◆ The range and resolution are fixed at 2 kΩ for continuity tests (a 2-wire resistance measurement).
- ◆ The instrument beeps (if the beeper is enabled) for each measurement less than or equal to the continuity threshold, and the actual resistance measurement appears on the display.
- ◆ From threshold to 2 kΩ, the instrument displays the actual resistance measurement with no beep. Above 2 kΩ, the instrument displays "OPEN" with no beep.
- ◆ The FETCh?, READ?, and MEASure:CONTinuity? queries return the measured resistance, regardless of its value.

## 2.8.2 MEASure:CURRent:{AC|DC}? [{<range>}|AUTO|MIN|MAX|DEF}]

Sets all measurement parameters and trigger parameters to their default values for AC or DC current measurements and immediately triggers a measurement. Also specifies the stalls through the incoming parameters. Table below is for the T3DMM5-5, T3DMM6-5 and T3DMM6-5-SC. See notes below on the T3DMM5-5 and T3DMM4-5.

| Parameters for the T3DMM5-5 and T3DMM6-5(-SC)                                                                                                                                                | Typical Return |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {200uA 2mA 20mA 200mA 2A 10A AUTO} ,<br>default AUTO(autorange).                                                                                                                   | None           |
| Configure AC current measurement using the 2A range. Make and read two measurements:<br><br>CONF:CURR:AC 2<br>SAMP:COUN 2<br>READ?<br><br>Typical Response : +4.32133675E-04,+4.18424606E-04 |                |

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ For the **T3DMM5-5** the minimum measurement current in AC range is 20mA.
- ◆ For the **T3DMM6-5** and **T3DMM6-5-SC** the minimum measurement current in AC range is 200uA.

Table below shows the possible settings on the **T3DMM4-5**.

| Parameters for the T3DMM4-5                                                                                                                                                                 | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range>: {600uA 6mA 60mA 600mA 6A 10A AUTO}<br>default AUTO(autorange). The 600uA and 6mA range can only be set in DC current mode, AC mode minimum range is 60mA                           | None           |
| Configure AC current measurement using the 6A range. Make and read two measurements:<br><br>CONF:CURR:AC 6<br>SAMP:COUN 2<br>READ?<br><br>Typical Response: +4.32133675E-04,+4.18424606E-04 |                |

### 2.8.3 MEASure:DIODE?

Sets all measurement parameters and trigger parameters to their default values for diode test measurements and immediately triggers a measurement. The results are sent directly to the instrument's output buffer.

| Parameter                                                            | Typical Return  |
|----------------------------------------------------------------------|-----------------|
| ( none )                                                             | +9.84733701E-01 |
| Configure, make, and read a default diode measurement:<br>MEAS:DIOD? |                 |

- ◆ The range and resolution are *fixed* for diode tests: the range is 2 VDC.
- ◆ The FETCh?, READ?, and MEASure:DIODE? queries return the measured voltage, regardless of its value.

**2.8.4 MEASure:{FREQuency|PERiod}?**

Sets all measurement parameters and trigger parameters to their default values for frequency or period measurements and immediately triggers a measurement. The results are sent directly to the instrument's output buffer.

| Parameter                                               | Typical Return  |
|---------------------------------------------------------|-----------------|
| ( none )                                                | +7.19480528E+01 |
| configure and read the default frequency measurements : |                 |
| MEAS:FREQ?                                              |                 |

- ◆ If the input voltage is too large for the selected voltage range (manual ranging), the instrument displays the word Overload on the front panel and returns "9.9E37" from the remote interface. Autoranging can be enabled for the input voltage.

**2.8.5 MEASure:{RESistance|FRESistance}?**

**[{<range>|AUTO|MIN|MAX|DEF}]**

Sets all measurement and trigger parameters to their default values for 4-wire resistance (FRESistance) or 2-wire (RESistance) measurements, and immediately triggers a measurement. The results are sent directly to the instrument's output buffer. Also specifies the stalls through the incoming parameters.

| Parameter                                                                                                                                                                             | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {200 Ω 2 kΩ 20 kΩ 200 kΩ 1 MΩ 10 MΩ 100 MΩ} , AUTO<br>(default) or DEFault                                                                                                  | ( none )       |
| Configure 4-wire resistance measurements using the 200 Ω range with default resolution. Then make and read one measurement: :<br>MEAS:FRES? 200<br>Typical Response : +6.71881065E+01 |                |

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.

---

## 2.8.5 Continued

The table below shows the measurement ranges of the **T3DMM4-5**

| Parameter                                                                       | Typical Return |
|---------------------------------------------------------------------------------|----------------|
| <range>: {600 Ω 6 kΩ 60 kΩ 600 kΩ 6 MΩ 60 MΩ 100 MΩ}, AUTO (default) or DEFault | ( none )       |

Configure 4-wire resistance measurements using the 600 Ω range with default resolution. Then make and read one measurement: :  
MEAS:FRES? 600  
Typical Response: +6.71881065E+01

## 2.8.6 MEASure:TEMPerature?[{RTD|THER|DEFault},{<type>|DEFault}]]

Sets all measurement parameters and trigger parameters to their default values and immediately triggers a measurement. The results are sent directly to the instrument's output buffer.

| Parameter                                                                                                                                                          | Typical Return |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <probe_type>: {RTD THER} , default THER.<br>The default command can only choose the built-in sensor manufacturers, does not support user defined sensor selection. | ( none )       |
| <type>: PT100(only possible value for RTD ) or {BITS90 EITS90 JITS90 KITS90 NITS90 RITS90 SITS90 TITS90}(The sensor can be selected for THER)                      |                |

Configure the RTD measurement. Then read out the measuring results:  
MEAS:TEMP? RTD,PT100  
Typical Response : -2.00000000E+02

- ◆ To change temperature units, use UNIT:TEMPerature.
- ◆ If the input signal is greater than can be measured, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ For RTD measurements, the instrument autoranges to the correct range for the transducer resistance measurement.
- ◆ For 4-wire RTD measurements, the instrument always enables the autozero function.

**2.8.7 MEASure[:VOLTage]:{AC|DC}? [{<range>}|AUTO|MIN|MAX|DEF]**

Sets all measurement parameters and trigger parameters to their default values and immediately triggers a measurement. The results are sent directly to the instrument's output buffer. Also specifies the stalls through the incoming parameters.

| <b>Parameter3 for the T3DMM5-5 and T3DMM6-5(-SC)</b>                                                                                                                       | <b>Typical Return</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <range> : {200 mV 2 V 20 V 200 V 1000 V(DC)<br>/750V(AC)} , default AUTO (automatic adjustment<br>range)                                                                   | ( none )              |
| Configure AC voltage measurements using the 200 V range. Then make and read<br>one measurement :<br>MEAS:VOLT:AC? 200<br>Typical Response: +2.43186951E-02,+2.56896019E-02 |                       |

- ◆ You can let autoranging select the measurement range, or you can manually select a fixed range. Autoranging conveniently selects the range for each measurement based on the input signal. For fastest measurements, use manual ranging (autoranging may require additional time for range selection).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.

The table below gives the measurement ranges for the **T3DMM4-5**.

| <b>Parameters for the T3DMM4-5</b>                                                                                                                                        | <b>Typical Return</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <range>: {600 mV 6 V 60 V 600 V 1000 V(DC)<br>/750V(AC)} , default AUTO (automatic adjustment<br>range)                                                                   | (none)                |
| Configure AC voltage measurements using the 600 V range. Then make and read<br>one measurement:<br>MEAS:VOLT:AC? 600<br>Typical Response: +2.43186951E-02,+2.56896019E-02 |                       |

## 2.8.8 MEASure:CAPacitance [{<range>}|AUTO|MIN|MAX|DEF}]

Sets all measurement parameters and trigger parameters to their default values for capacitance measurement. Also specifies the stalls through the incoming parameters

| Parameters for T3DMM6-5 and T3DMM6-5-SC                                                                                                                               | Typical Return |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {2nF 20nF 200nF 2uF  20uF <br>200uF 2mf 20mf 100mf} , AUTO (default) or DEFault                                                                             | ( none )       |
| Configure DC voltage ratio measurements using the 2uF resolution. Then make and read one measurement:<br>MEAS:CAP? 2uF<br>READ?<br>Typical Response : +7.26141264E-10 |                |

- ◆ For the Input terminals, you can allow the instrument to select the measurement range by autoranging or you can select a fixed range using manual ranging. Autoranging decides which range to use for each measurement based on the input signal. For faster measurements, use manual ranging on each measurement (additional time is required for autoranging to select a range).
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.

| Parameters for T3DMM4-5 and T3DMM5-5                                                                                                                                 | Typical Return |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range>: {2nF 20nF 200nF 2uF  20uF <br>200uF 10000uF} , AUTO (default) or DEFault                                                                                    | ( none )       |
| Configure DC voltage ratio measurements using the 2uF resolution. Then make and read one measurement:<br>MEAS:CAP? 2uF<br>READ?<br>Typical Response: +7.26141264E-10 |                |

## 2.9 SENSe Subsystem Introduction

The SENSe subsystem configures measurements. The most basic SENSe command is [SENSe:]FUNCtion[:ON], which selects the measurement function. All other SENSe commands are associated with specific measurement types:

Current  
Frequency and Period  
Resistance  
Temperature  
Voltage  
Capacitance

### 2.9.1 [SENSe:]FUNCtion[:ON] "<function>"

#### [SENSe:]FUNCtion[:ON]?

Selects the measurement function (all function-related measurement attributes are retained).

| Parameter                                         | Typical Return |
|---------------------------------------------------|----------------|
| CONTinuity                                        |                |
| CURRent:AC                                        |                |
| CURRent[:DC]                                      |                |
| DIODe                                             |                |
| FREQuency                                         |                |
| FRESistance                                       |                |
| PERiod                                            |                |
| RESistance                                        |                |
| TEMPerature                                       |                |
| VOLTage:AC                                        |                |
| VOLTage[:DC]                                      |                |
| CAPacitance                                       |                |
| The default is VOLTage[:DC].                      |                |
| Select the AC voltage function:<br>FUNC "VOLT:AC" |                |

- ◆ If you change the measurement function, all measurement attributes of the previous function (range, resolution, etc.) are remembered. If you return to the original function, those measurement attributes will be restored.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).
- ◆ Changing the measurement function disables scaling, limit testing, histogram, and statistics (CALC:SCAL:STAT,CALC:LIM:STAT, CALC:TRAN:HIST:STAT, and CALC:AVER:STAT set to OFF).

**[SENSe:]CURREnt Subsystem**

This subsystem configures AC and DC current measurements.

**Command Summary**

[SENSe:]CURREnt:{AC|DC}:NULL[:STATe]  
 [SENSe:]CURREnt:{AC|DC}:NULL:VALue  
 [SENSe:]CURREnt:{AC|DC}:NULL:VALue:AUTO  
 [SENSe:]CURREnt:{AC|DC}:RANGE  
 [SENSe:]CURREnt:{AC|DC}:RANGE:AUTO  
 [SENSe:]CURREnt[:DC]:NPLC  
 [SENSe:]CURREnt[:AC]: BANDwidth  
 [SENSe:]CURREnt[:DC]: AZ[:STATe]  
 [SENSe:]CURREnt[:DC]:FILTter[:STATe]

**2.9.2 [SENSe:]CURREnt:{AC|DC}:NULL[:STATe] {ON|1|OFF|0}****[SENSe:]CURREnt:{AC|DC}:NULL[:STATe]?**

Enables or disables the null function for AC or DC current measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                                                                                                                                                                                                                                                                                                    | Typical Return    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default OFF                                                                                                                                                                                                                                                                                   | 0 (OFF) or 1 (ON) |
| Configure AC current measurements, using the null function to subtract 100 mA from the measurements. Then make two measurements and send them to the instrument's output buffer:CONF:CURR:AC<br>CURR:AC:NULL:STAT ON;VAL 100mA<br>SAMP:COUN 2<br>READ?<br>Typical Response : -9.92150377E-02,-9.98499843E-02 |                   |

- ◆ Enabling the scaling function also enables automatic null valueselection ([SENSe:]CURREnt: {AC|DC}:NULL:VALue:AUTO ON).
- ◆ To set a fixed null value, use this command:  
`[SENSe:]CURREnt:{AC|DC}:NULL:VALue.`
- ◆ The instrument disables the null function after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.3 [SENSe:]CURRent:{AC|DC}:NULL:VALue {<value>|MIN|MAX|DEF}****[SENSe:]CURRent:{AC|DC}:NULL:VALue? [{MIN|MAX|DEF}]**

Sets the null value for AC or DC current measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter              | Typical Return  |
|------------------------|-----------------|
| -12 to 12 A, default 0 | +1.00000000E-01 |

Configure AC current measurements, using the null function to subtract 100 mA from the measurements. Then make two measurements and send them to the instrument's output buffer:

CONF:CURR:AC  
CURR:AC:NULL:STAT ON;VAL 100mA  
SAMP:COUN 2  
READ?

Typical Response : -9.92150377E-02,-9.98499843E-02

- ◆ Specifying a null value disables automatic null value selection ([SENSe:]CURRent:{AC|DC}:NULL:VALue:AUTO OFF).
- ◆ To use the null value, the null state must be on ([SENSe:]CURRent:{AC|DC}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.4 [SENSe:]CURREnt:{AC|DC}:NULL:VALue:AUTO{ON|1|OFF|0}****[SENSe:]CURREnt:{AC|DC}:NULL:VALue:AUTO?**

Enables or disables automatic null value selection for AC or DC current measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                                           | Typical Return    |
|-----------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default ON                           | 0 (OFF) or 1 (ON) |
| Using automatic selection of zero value to measure: |                   |
| CURR:AC:NULL:VAL:AUTO ON                            |                   |
| READ?                                               |                   |
| Typical Response : -4.67956379E-08,+2.33978190E-08  |                   |

- ◆ When automatic reference selection is ON, the first measurement made is used as the null value for all subsequent measurements.  
[SENSe:]CURREnt:{AC|DC}:NULL:VALue will be set to this value. Automatic null value selection will be disabled.
- ◆ When automatic null value selection is disabled (OFF), the null value is specified by this command: [SENSe:] CURREnt:{AC|DC}:NULL:VALue.
- ◆ The instrument enables automatic null value selection when the null function is enabled ([SENSe:]CURREnt:{AC|DC}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.5 [SENSe:]CURRent:{AC|DC}:RANGE {<range>|MIN|MAX|DEF}****[SENSe:]CURRent:{AC|DC}:RANGE? [{MIN|MAX|DEF}]**

Manually choose measurement range.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameters for the T3DMM5-5, T3DMM6-5 (-SC)                                                                                                                                                            | Typical Return  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <range> : {200uA 2mA 20mA 200mA 2A 10A AUTO} ,<br>default is AUTO(autorange).                                                                                                                          | +2.00000000E-01 |
| Configure AC current measurements using the 2 A range. Make and read two measurements:<br>CONF:CURR:AC<br>CURR:AC:RANG 2<br>SAMP:COUN 2<br>READ?<br>Typical Response : +3.53049833E-04,+3.54828343E-04 |                 |

- ◆ Selecting a fixed range ([SENSe:]<function>:RANGE) disables autoranging.
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), or Instrument Preset (SYSTem:PRESet).

| Parameters for the T3DMM4-5                                                                                                                                                                           | Typical Return  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <range>: {600uA 6mA 60mA 600mA 6A 10A AUTO},<br>default is AUTO (autorange).                                                                                                                          | +2.00000000E-01 |
| Configure AC current measurements using the 2 A range. Make and read two measurements:<br>CONF:CURR:AC<br>CURR:AC:RANG 2<br>SAMP:COUN 2<br>READ?<br>Typical Response: +3.53049833E-04,+3.54828343E-04 |                 |

## 2.9.6 [SENSe:]CURREnt:{AC|DC}:RANGE:AUTO {OFF|ON|ONCE}

### [SENSe:]CURREnt:{AC|DC}:RANGE:AUTO?

Disables or enables autoranging for AC or DC current measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                 | Typical Return    |
|---------------------------|-------------------|
| {ON 1 OFF 0} , default ON | 0 (OFF) or 1 (ON) |

Configure AC current measurements and perform an immediate autorange.

Make and read two measurements:

CONF:CURR:AC  
 CURR:AC:RANG:AUTO ONCE  
 SAMP:COUN 2  
 READ?

Typical Response : +5.79294185E-06,+5.79294185E-06

- ◆ With autoranging enabled, the instrument selects the range based on the input signal.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), or Instrument Preset (SYSTem:PRESet).

## 2.9.7 [SENSe:]CURREnt[:DC]:NPLC {<PLC>|MIN|MAX|DEF}

### [SENSe:]CURREnt[:DC]:NPLC? [{MIN|MAX|DEF}]

Sets the integration time in number of power line cycles (PLC) for DC current measurements. Integration time is the period that the instrument's analog-to-digital (A/D) converter samples the input signal for a measurement.

| Parameters for T3DMM6-5 and T3DMM6-5-SC                                                                                                                                                                                                                     | Typical Return  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| {100 10 1 0.5 0.05 0.005} , default 10. On the front panel, 100 10 1 0.5 0.05 0.005 corresponds to the NPLC menu under<br>100PLC 10PLC 1PLC 0.5PLC 0.05PLC 0.005PLC(50 Hz power supply) or<br>100PLC 10PLC 1PLC 0.6PLC 0.05PLC 0.006PLC(60 Hz power supply) | +10.0000000E+01 |

Configure DC current measurements using a 10 PLC integration time.:  
 CONF:CURR:DC  
 CURR:DC:NPLC 10

## Remote Manual

---

- ◆ This parameter is set to its default value after a Factory Reset (\*RST), or Instrument Preset (SYSTem:PRESet).

| Parameters For T3DMM4-5 and T3DMM5-5                                                                                                           | Typical Return  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| {0.3 1 10} , T3DMM4-5: default 10,<br>T3DMM5-5: Default 1<br>On the front panel, 0.3 1 10 corresponds to the Speed menu under fast middle slow | +1.00000000E+01 |
| Configure DC current measurements using a 10 PLC integration time.:<br>CONF:CURR:DC<br>CURR:DC:NPLC 10                                         |                 |

### 2.9.8 [SENSe:]CURRent[:AC]:BANDwidth{|MIN|MAX|DEF}

**[SENSe:]CURRent[:AC]:BANDwidth? [{MIN|MAX|DEF}]**

Sets AC current filter function.

| Parameter                                                                                               | Typical Return |
|---------------------------------------------------------------------------------------------------------|----------------|
| {3 20 200} , default 20. On the front panel, 3 20 200 corresponds to the NPLC menu under 3HZ 20HZ 200HZ | 20Hz           |
| Configure AC current measurements using 20Hz.:<br>CONF:CURR:AC<br>CURR:AC: BAND 20                      |                |

- ◆ This parameter is set to its default value after a Factory Reset.

### 2.9.9 [SENSe:]CURRent[:DC]:AZ[:STATe] {ON|1|OFF|0}

**[SENSe:]CURRent[:DC]:AZ[:STATe]?**

Enables or disables the Auto-Zero function for DC current measurements.

| Parameter                                                           | Typical Return    |
|---------------------------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default OFF                                          | 0 (OFF) or 1 (ON) |
| Disables the Auto-Zero function .<br>CONF:CURR:DC<br>CURR:DC:AZ OFF |                   |

## [SENSe:]{FREQuency|PERiod}

This subsystem configures frequency and period measurements.

### Command Summary

[SENSe:]{FREQuency|PERiod}:NULL[:STATe] {ON|1|OFF|0}  
 [SENSe:]{FREQuency|PERiod}:NULL:VALue {<value>} minimum | maximum | default  
 [SENSe:]{FREQuency|PERiod}:NULL:VALue:AUTO {ON|1|OFF|0}  
 [SENSe:]{FREQuency|PERiod}:VOLTage:RANGe {<range>}|MIN|MAX|DEF  
 [SENSe:]{FREQuency|PERiod}:VOLTage:RANGe:AUTO {OFF|ON|ONCE}

### 2.9.10 [SENSe:]{FREQuency|PERiod}:NULL[:STATe] {ON|1|OFF|0}

#### [SENSe:]{FREQuency|PERiod}:NULL[:STATe]?

Enables or disables the null function for frequency and period measurements.

This parameter is shared between frequency and period measurements.

| Parameter                  | Typical Return    |
|----------------------------|-------------------|
| {ON 1 OFF 0} , default OFF | 0 (OFF) or 1 (ON) |

Configure frequency measurements, using the null function to subtract 1kHz from the measurements. Make and read two measurements:  
 CONF:FREQ  
 FREQ:NULL:STAT ON;VAL 1 kHz  
 SAMP:COUN 2  
 READ?  
 Typical Response : +1.15953012E+02,+1.07954466E+02

- ◆ Enabling the scaling function also enables automatic null value selection ([SENSe:]{FREQuency|PERiod}:NULL:VALue:AUTO ON).
- ◆ To set a fixed null value, use this command:  
 [SENSe:]{FREQuency|PERiod}:NULL:VALue.
- ◆ The instrument disables the null function after a Factory Reset (\*RST) or CONFigure function.

### 2.9.11 [SENSe:]{FREQuency|PERiod}:NULL:VALue

{<value>|MIN|MAX|DEF}

[SENSe:]{FREQuency|PERiod}:NULL:VALue? [{MIN|MAX|DEF}]

Sets the null value for frequency or period measurements.

This parameter is shared between frequency and period measurements.

| Parameter                                                                                                                                                                                                                                   | Typical Return  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| -1.2E6 to +1.2E6, default 0                                                                                                                                                                                                                 | +1.00000000E-02 |
| Configure frequency measurements, using the null function to subtract 1kHz from the measurements. Make and read two measurements: FREQ:NULL:STAT ON;VAL 1 kHz<br>SAMP:COUN 2<br>READ?<br>Typical Response : +1.15953012E+02,+1.07954466E+02 |                 |

- ◆ Specifying a null value disables automatic null value selection ([SENSe:]{FREQuency|PERiod}:NULL:VALue:AUTO OFF).
- ◆ To use the null value, the null state must be on ([SENSe:]{FREQuency|PERiod}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.12 [SENSe:]{FREQuency|PERiod}:NULL:VALue:AUTO {ON|1|OFF|0}****[SENSe:]{FREQuency|PERiod}:NULL:VALue:AUTO?**

Enables or disables automatic null value selection for frequency and period measurements.

This parameter is shared between frequency and period measurements.

| Parameter                 | Typical Return    |
|---------------------------|-------------------|
| {ON 1 OFF 0} , default ON | 0 (OFF) or 1 (ON) |

Using automatic selection of zero value measurement:  
 FREQ:NULL:VAL:AUTO ON  
 READ?  
 Typical Response : +1.15953012E+02,+1.07954466E+02

- ◆ When automatic reference selection is ON, the first measurement made is used as the null value for all subsequent measurements.  
 [SENSe:]{FREQuency|PERiod}:NULL:VALue will be set to this value. Automatic null value selection will be disabled.
- ◆ When automatic null value selection is disabled (OFF), the null value is specified by this command: [SENSe:]{FREQuency|PERiod}:NULL:VALue.
- ◆ The instrument enables automatic null value selection when the null function is enabled ([SENSe:]{FREQuency|PERiod}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.13 [SENSe:]{FREQuency|PERiod}:VOLTage:RANGe**

{<range>|MIN|MAX|DEF}

**[SENSe:]{FREQuency|PERiod}:VOLTage:RANGe? [{MIN|MAX|DEF}]**

Manually choose frequency/period measurement mode voltage range:

Note : This parameter is shared between frequency and period measurements.

| Parameter for T3DMM5-5, T3DMM6-5 and T3DMM6-5-SC                                         | Typical Return  |
|------------------------------------------------------------------------------------------|-----------------|
| <range> : {200 mV 2 V 20 V 200 V 750V} , default 20V                                     | +2.00000000E+01 |
| Configures frequency measurements using the 20 VAC range. Make and read two measurements |                 |
| CONF:FREQ                                                                                |                 |
| FREQ:VOLT:RANG 20                                                                        |                 |
| SAMP:COUN 2                                                                              |                 |
| READ?                                                                                    |                 |

- ◆ Selecting a fixed range ([SENSe:]<function>:RANGe) disables autoranging.
- ◆ If the input voltage is too large for the selected voltage range (manual ranging), the instrument displays the word Overload on the front panel and returns "9.9E37" from the remote interface. Autoranging can be enabled for the input voltage.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

| Parameter for T3DMM4-5                                                                   | Typical Return  |
|------------------------------------------------------------------------------------------|-----------------|
| <range>: {600 mV 6 V 60 V 600 V 750V}, default 60V                                       | +6.00000000E+01 |
| Configures frequency measurements using the 60 VAC range. Make and read two measurements |                 |
| CONF:FREQ                                                                                |                 |
| FREQ:VOLT:RANG 60                                                                        |                 |
| SAMP:COUN 2                                                                              |                 |
| READ?                                                                                    |                 |

## 2.9.14 [SENSe:]{FREQuency|PERiod}:VOLTage:RANGE:AUTO {OFF|ON|ONCE}

### [SENSe:]{FREQuency|PERiod}:VOLTage:RANGE:AUTO?

Disables or enables voltage autoranging for frequency and period measurements.  
Note : This parameter is shared between frequency and period measurements.

| Parameter                                                                                                                                                                        | Typical Return    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default ON                                                                                                                                                        | 0 (OFF) or 1 (ON) |
| Configure frequency measurements and perform an immediate AC voltage autorange. Make and read two measurements:<br>CONF:FREQ<br>FREQ:VOLT:RANG:AUTO ONCE<br>SAMP:COUN 2<br>READ? |                   |

- ◆ With autoranging enabled, the instrument selects the range based on the input signal.
- ◆ Selecting a fixed range ([SENSe:]<function>:RANGE) disables autoranging.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

## 2.9.15 [SENSe:]{FREQuency|PERiod}:APERture {<value>|MIN|MAX|DEF}

### [SENSe:]{FREQuency|PERiod}:APERture? [{MIN|MAX|DEF}]

Manually choose frequency/period measurement mode gatetime:  
Note : This parameter is shared between frequency and period measurements.

| Parameter                                                                                                                                         | Typical Return  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <value> : {1ms 10ms 100ms 1s} , default 100ms                                                                                                     | +1.00000000E-01 |
| Configures frequency measurements using the 100ms gatetime. Make and read two measurements<br>CONF:FREQ<br>FREQ: APER 0.1<br>SAMP:COUN 2<br>READ? |                 |

### [SENSe:]{RESistance|FRESistance} Subsystem

This subsystem configures two- and four-wire resistance measurements.

#### Command Summary

```
[SENSe:]{RESistance|FRESistance}:NPLC
[SENSe:]{RESistance|FRESistance}:NULL[:STATe]
[SENSe:]{RESistance|FRESistance}:NULL:VALue
[SENSe:]{RESistance|FRESistance}:NULL:VALue:AUTO
[SENSe:]{RESistance|FRESistance}:RANGE
[SENSe:]{RESistance|FRESistance}:RANGE:AUTO
```

#### 2.9.16 [SENSe:]{RESistance|FRESistance}:NPLC {<PLC>|MIN|MAX|DEF}

[SENSe:]{RESistance|FRESistance}:NPLC? [{MIN|MAX|DEF}]

Sets the integration time in number of power line cycles (PLC) for all alternating current measurements. Integration time is the period that the instrument's analog-to-digital (A/D) converter samples the input signal for a measurement.

| Parameters for T3DMM6-5 and T3DMM6-5-SC                                                                                                                                                                                                                 | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| {100 10 1 0.5 0.05 0.005} , default 10. On the front panel, 100 10 1 0.5 0.05 0.005 corresponds to the NPLC menu under 100PLC 10PLC 1PLC 0.5PLC 0.05PLC 0.005PLC (50 Hz power supply) or 100PLC 10PLC 1PLC 0.6PLC 0.05PLC 0.006PLC (60 Hz power supply) | +1.0000000E+01 |
| Configure 2-wire resistance measurements using a 10 PLC integration time.<br>CONF:RES<br>CURR:DC:NPLC 10                                                                                                                                                |                |

- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

| Parameters for T3DMM4-5 and T3DMM5-5                                                                        | Typical Return |
|-------------------------------------------------------------------------------------------------------------|----------------|
| {0.3 1 10}, default 10<br>On the front panel, 0.3 1 10 corresponds to the Speed menu under fast middle slow | +1.0000000E+01 |
| Configure 2-wire resistance measurements using a 10 PLC integration time.<br>CONF:RES RES:NPLC 10           |                |

**2.9.17 [SENSe:]{RESistance|FRESistance}:NULL[:STATe] {ON|1|OFF|0}****[SENSe:]{RESistance|FRESistance}:NULL[:STATe]?**

Enables or disables the null function for all resistance measurements.

| Parameter                                                                                                                                                                                               | Typical Return    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default OFF                                                                                                                                                                              | 0 (OFF) or 1 (ON) |
| Configure 2-wire resistance measurements, using the null function to remove 100 mΩ of wiring resistance. Make and read two measurements<br>CONF:RES<br>RES:NULL:STAT ON;VAL 0.1<br>SAMP:COUN 2<br>READ? |                   |

- ◆ Enabling the scaling function also enables automatic null value selection ([SENSe:]{RESistance|FRESistance}:NULL:VALue:AUTO ON).
- ◆ To set a fixed null value, use this command:  
`[SENSe:]{RESistance|FRESistance}:NULL:VALue.`
- ◆ The instrument disables the null function after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

### 2.9.18 [SENSe:]{RESistance|FRESistance}:NULL:VALue

{<value>|MIN|MAX|DEF}

[SENSe:]{RESistance|FRESistance}:NULL:VALue? [{MIN|MAX|DEF}]

Stores a null value for all resistance measurements.

| Parameter                                                                                                                                                                                                                                                           | Typical Return  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| -120 MΩ to +120 MΩ                                                                                                                                                                                                                                                  | +1.00000000E+02 |
| Configure 2-wire resistance measurements, using the null function to remove 100 mΩ of wiring resistance. Make and read two measurements:<br>CONF:RES<br>RES:NULL:STAT ON;VAL 0.1<br>SAMP:COUN 2<br>READ?<br><b>Typical Return :</b> +1.04530000E+02,+1.04570000E+02 |                 |

- ◆ Specifying a null value disables automatic null value selection ([SENSe:]{RESistance|FRESistance}:NULL:VALue:AUTO OFF).
- ◆ To use the null value, the null state must be on ([SENSe:]{RESistance|FRESistance}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

## 2.9.19 [SENSe:]{RESistance|FRESistance}:NULL:VALue:AUTo {ON|1|OFF|0}

[SENSe:]{RESistance|FRESistance}:NULL:VALue:AUTo?

Enables or disables automatic null value selection for all resistance measurements.

| Parameter                                               | Typical Return    |
|---------------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default on                               | 0 (OFF) or 1 (ON) |
| Using automatic selection of zero value to measurement: |                   |
| RES:NULL:VAL:AUTo ON                                    |                   |
| READ?                                                   |                   |
| <b>Typical Return</b> : +1.23765203E+02,+1.16564762E+02 |                   |

- ◆ When automatic reference selection is ON, the first measurement made is used as the null value for all subsequent measurements. [SENSe:]{RESistance|FRESistance}:NULL:VALue will be set to this value. Automatic null value selection will be disabled.
- ◆ When automatic null value selection is disabled (OFF), the null value is specified by this command: [SENSe:] {RESistance|FRESistance}:NULL:VALue.
- ◆ The instrument enables automatic null value selection when the null function is enabled ([SENSe:] {RESistance|FRESistance}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.20 [SENSe:]{RESistance|FRESistance}:RANGE**

{&lt;range&gt;|MIN|MAX|DEF}

**[SENSe:]{RESistance|FRESistance}:RANGE? [{MIN|MAX|DEF}]**

Selects a fixed measurement range for all resistance measurements.

| Parameters for T3DMM5-5 and T3DMM6-5(-SC)                                                                                                               | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {200 Ω 2 kΩ 20 kΩ 200 kΩ 1 MΩ 10 MΩ 100 MΩ} , default 2 kΩ                                                                                    | +2.0000000E+03 |
| Configure 2-wire resistance measurements using the 2 kΩ range. Then make and read one measurement:<br>CONF:RES<br>RES:RANG 2000<br>SAMP:COUN 2<br>READ? |                |

- ◆ Selecting a fixed range ([SENSe:]<function>:RANGE) disables auto ranging.
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.

| Parameters for T3DMM4-5                                                                                                                                 | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range>: {600 Ω 6 kΩ 60 kΩ 600 kΩ 6 MΩ 60 MΩ 100 MΩ}, default 6kΩ                                                                                       | +6.0000000E+03 |
| Configure 2-wire resistance measurements using the 6 kΩ range. Then make and read one measurement:<br>CONF:RES<br>RES:RANG 6000<br>SAMP:COUN 2<br>READ? |                |

## 2.9.21 [SENSe:]{RESistance|FRESistance}:RANGE:AUTO {OFF|ON|ONCE}

### [SENSe:]{RESistance|FRESistance}:RANGE:AUTO?

Disables or enables autoranging for all resistance measurements. Autoranging is convenient because it automatically selects the range for each measurement based on the input signal. Specifying ONCE performs an immediate autorange and then turns autoranging off.

| Parameter                                                                                                                                                              | Typical Return  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| {ON 1 OFF 0} , default ON                                                                                                                                              | 0(OFF) or 1(ON) |
| Configure 2-wire resistance measurements and perform an immediate autorange. Make and read two measurements:<br>CONF:RES<br>RES:RANG:AUTO ONCE<br>SAMP:COUN 2<br>READ? |                 |

- ◆ Autoranging goes down a range at less than 10% of range and up a range at greater than 120% of range.
- ◆ Selecting a fixed range ([SENSe:]<function>:RANGE) disables autoranging.
- ◆ This parameter is set to its default value after a Factory Reset(\*RST) or Instrument Preset (SYSTem:PRESet).

## 2.9.22 [SENSe:]{RESistance|FRESistance}:AZ[:STATe] {ON|1|OFF|0}

### [SENSe:]{RESistance|FRESistance}:AZ[:STATe]?

Enables or disables the Auto-Zero for RESistance and FRESistance measurements.

| Parameter                                                                                                                | Typical Return    |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|
| {ON 1 OFF 0} , default OFF                                                                                               | 0 (OFF) or 1 (ON) |
| Configure RESistance measurements, disables the Auto-Zero function to RESistance measurements.<br>CONF:RES<br>RES:AZ OFF |                   |

### [SENSe:]TEMPerature Subsystem

This subsystem configures temperature measurements.

#### Command Summary

[SENSe:]TEMPerature:NULL[:STATe]  
[SENSe:]TEMPerature:NULL:VALue  
[SENSe:]TEMPerature:NULL:VALue:AUT  
O [SENSe:]TEMPerature:TRANSducer?  
[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANSducer:LIST?  
[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANSducer  
[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANSducer:POINT?

#### 2.9.23 [SENSe:]TEMPerature:NULL[:STATe] {ON|1|OFF|0}

##### [SENSe:]TEMPerature:NULL[:STATe]?

Enables or disables the null function for temperature measurements.

| Parameter                 | Typical Return |
|---------------------------|----------------|
| {ON 1 OFF 0} , default ON |                |

0(OFF)or1(ON) Use the null function to subtract 25°.  
TEMP:NULL:STAT ON;VAL 25

- ◆ Enabling the scaling function also enables automatic null value selection ([SENSe:]TEMPerature:NULL:VALue:AUTO ON).
- ◆ To set a fixed null value, use this command: [SENSe:]TEMPerature:NULL:VALue.
- ◆ The instrument disables the null function after a Factory Reset(\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.24 [SENSe:]TEMPerature:NULL:VALue {<value>|MIN|MAX|DEF}****[SENSe:]TEMPerature:NULL:VALue? [{MIN|MAX|DEF}]**

Stores a null value for temperature measurements.

| Parameter                              | Typical Return  |
|----------------------------------------|-----------------|
| -1.0E15 to +1.0E15 , default 0         | +0.00000000E+00 |
| Use the null function to subtract 25°. |                 |
| TEMP:NULL:STAT ON;VAL 25               |                 |

- ◆ Specifying a null value disables automatic null value selection ([SENSe:]TEMPerature:NULL:VALue:AUTO OFF).
- ◆ To use the null value, the null state must be on ([SENSe:]TEMPerature:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

### 2.9.25 [SENSe:]TEMPerature:NULL:VALue:AUTO {ON|1|OFF|0}

#### [SENSe:]TEMPerature:NULL:VALue:AUTO?

Enable or disable the automatic zero value choice

| Parameter                                         | Typical Return |
|---------------------------------------------------|----------------|
| {ON 1 OFF 0} , default ON                         | 0(OFF)or1(ON)  |
| Use automatic zero value choice for measurement : |                |
| TEMP:NULL:VAL:AUTO ON                             |                |

- ◆ When automatic reference selection is ON, the first measurement made is used as the null value for all subsequent measurements. [SENSe:]TEMPerature:NULL:VALue will be set to this value. Automatic null value selection will be disabled.
- ◆ When automatic null value selection is disabled (OFF), the null value is specified by this command: [SENSe:] TEMPerature:NULL:VALue.
- ◆ The instrument enables automatic null value selection when the null function is enabled ([SENSe:] TEMPerature:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.26 [SENSe:]TEMPerature:TRANsducer?**

Query current effective sensor.

| <b>Parameter</b>                                                          | <b>Typical Return</b>   |
|---------------------------------------------------------------------------|-------------------------|
| (none )                                                                   | MANU DEFINE,THER,BITS90 |
| Query current effective sensor:<br>TEMP:TRAN?<br>Typical Response : PT100 |                         |

**2.9.27****[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANsducer:  
LIST?**

Query user-defined/manufacturer curing RTD/THER sensor list.

| <b>Parameter</b>                                                                                   | <b>Typical Return</b>                                       |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| (none )                                                                                            | BITS90,EITS90,JITS90,KITS90,NITS90,<br>RITS90,SITS90,TITS90 |
| Query manufacturer curing RTD sensor list:<br>TEMP:MDEF:RTD:TRAN:LIST?<br>Typical Response : PT100 |                                                             |

### 2.9.28

**[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANsducer<transducer>**

Set the current effective sensor.

| Parameter                                                                  | Typical Return |
|----------------------------------------------------------------------------|----------------|
| PT100(RTD)/{BITS90 EITS90 JITS90 KITS90 NITS90 RITS90 SITS90 TITS90}(THER) | (none)         |
| Set the THER KITS90 as the current sensor :<br>TEMP:MDEF:THER:TRAN KITS90  |                |

- ◆ The information can be obtained through the  
[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANsducer:LIST?
- ◆ This command will respond to the default sensor(KITS90) after a Factory Reset.

### 2.9.29

**[SENSe:]TEMPerature:{UDEFine|MDEFine}:{THER|RTD}:TRANsducer:POINt?**

Inquiry definition of information sensor.

| Parameter                                                                                  | Typical Return                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PT100(RTD)/{BITS90 EITS90 JITS90 KITS90 NITS90 RITS90 SITS90 TITS90}(THER)                 | 1 -6.45800 -270.0000,2 -6.44100 -260.0000...<br>The return value to serial number voltage value    temperature (point) of the format arrangement, comma-separated between different points. |
| Inquiry detailed information of THER KITS90 definition<br>TEMP:MDEF:THER:TRAN:POIN? KITS90 |                                                                                                                                                                                             |

## [SENSe:]VOLTage Subsystem

This subsystem configures AC voltage measurements and DC voltage measurements.

### Command Summary

[SENSe:]VOLTage:{AC|DC}:NULL[:STATe]  
 [SENSe:]VOLTage:{AC|DC}:NULL:VALue  
 [SENSe:]VOLTage:{AC|DC}:NULL:VALue:AUTO  
 [SENSe:]VOLTage:{AC|DC}:RANGE  
 [SENSe:]VOLTage:{AC|DC}:RANGE:AUTO  
 [SENSe:]VOLTage[:DC]:NPLC  
 [SENSe:]VOLTage[:DC]:IMPedance

### 2.9.30 [SENSe:]VOLTage:{AC|DC}:NULL[:STATe] {ON|1|OFF|0}

#### [SENSe:] VOLTage:{AC|DC}:NULL[:STATe]?

Enables or disables the null function for AC or DC voltage measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                  | Typical Return  |
|----------------------------|-----------------|
| {ON 1 OFF 0} , default OFF | 0(OFF) or 1(ON) |

Configure AC voltage measurements, using the null function to subtract 100 mV from the measurements. Make and read two measurements:

CONF:VOLT:AC  
 VOLT:AC:NULL:STAT ON;VAL 100mV  
 SAMP:COUN 2  
 READ?

Typical Response : +1.03625390E+00,+1.03641200E+00

- ◆ Enabling the scaling function also enables automatic null value selection ([SENSe:]VOLTage:{AC|DC}:NULL:VALue:AUTO ON).
- ◆ To set a fixed null value, use this command:  
`[SENSe:]VOLTage:{AC|DC}:NULL:VALue.`
- ◆ The instrument disables the null function after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.31 [SENSe:]VOLTage:{AC|DC}:NULL:VALue {<value>|MIN|MAX|DEF}****[SENSe:]VOLTage:{AC|DC}:NULL:VALue? [{MIN|MAX|DEF}]**

Stores a null value for voltage measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                     | Typical Return  |
|-------------------------------|-----------------|
| -1200 to +1,200 V , default 0 | +1.00000000E+01 |

Configure AC voltage measurements, using the null function to subtract 100 mV from the measurements. Make and read two measurements:

```
CONF:VOLT:AC
VOLT:AC:NULL:STAT ON;VAL 100mV
SAMP:COUN 2
READ?
```

Typical Response : +1.03625390E+00,+1.03641200E+00

- ◆ Specifying a null value disables automatic null value selection ([SENSe:]VOLTage:{AC|DC}:NULL:VALue:AUTO OFF).
- ◆ To use the null value, the null state must be on ([SENSe:]VOLTage:{AC|DC}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.32 [SENSe:]VOLTage:{AC|DC}:NULL:VALue:AUTO {ON|1|OFF|0}****[SENSe:]VOLTage:{AC|DC}:NULL:VALue:AUTO?**

Enables or disables automatic null value selection for AC voltage or DC voltage and ratio measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                 | Typical Return |
|---------------------------|----------------|
| {ON 1 OFF 0} , default ON | 0(OFF)or1(ON)  |

Make a second set of measurements using automatic null value selection:VOLT:AC:NULL:VAL:AUTo ON  
READ?  
Typical Response : +0.00000000E+00,+0.01230000E+00

- ◆ When automatic reference selection is ON, the first measurement made is used as the null value for all subsequent measurements.  
[SENSe:]VOLTage:{AC|DC}:NULL:VALue will be set to this value. Automatic null value selection will be disabled.
- ◆ When automatic null value selection is disabled (OFF), the null value is specified by this command:[SENSe:]VOLTage:{AC|DC}:NULL:VALue.
- ◆ The instrument enables automatic null value selection when the null function is enabled ([SENSe:]VOLTage: {AC|DC}:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**2.9.33 [SENSe:]VOLTage:{AC|DC}:RANGe {<range>|MIN|MAX|DEF}****[SENSe:]VOLTage:{AC|DC}:RANGe? [{MIN|MAX|DEF}]**

Manually choose measurement range

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameters for T3DMM5-5 and T3DMM6-5(-SC)                                                                                                                                                                | Typical Return  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <range> : {200 mV 2 V 20 V 200 V 1000 V(DC) 750V(AC)}<br>AC default:20V.<br>DC default:1000V.                                                                                                            | +2.00000000E+00 |
| Configure AC voltage measurements using the 100 V range. Make and read two measurements:<br>CONF:VOLT:AC<br>VOLT:AC:RANG 2<br>SAMP:COUN 2<br>READ?<br>Typical Response : +8.21650028E-03,+8.17775726E-03 |                 |

- ◆ Selecting a fixed range ([SENSe:]<function>:RANGe) disables autoranging.
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ The instrument is set to the default range, with autoranging enabled ([SENSe:]VOLTage:{AC|DC}:RANGe:AUTO ON), after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

| Parameters for T3DMM4-5                                                                                                                                                                               | Typical Return  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <range>: {600 mV 6 V 60 V 600 V 1000 V(DC) 750V(AC)}<br>AC default:60V.<br>DC default:1000V.                                                                                                          | +6.00000000E+00 |
| Configure AC voltage measurements using the 6 V range. Make and read two measurements:<br>CONF:VOLT:AC<br>VOLT:AC:RANG 6<br>SAMP:COUN 2<br>READ?<br>Typical Response: +8.21650028E-03,+8.17775726E-03 |                 |

### 2.9.34 [SENSe:]VOLTage:{AC|DC}:RANGE:AUTO {OFF|ON|ONCE}

#### [SENSe:]VOLTage:{AC|DC}:RANGE:AUTO?

Disables or enables autoranging for AC and DC voltage measurements and for DC ratio measurements.

Note: This parameter is not shared between AC and DC measurements. The parameters are independent for AC and DC measurements.

| Parameter                 | Typical Return                                                                                                                                                                                                                                    |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| {ON 1 OFF 0} , default ON | 0(OFF)or1(ON)<br><br>Configure DC voltage measurements and perform an immediate autorange.<br>Make and read two measurements:CONF:VOLT:AC<br>VOLT:AC:RANG:AUTO ONCE<br>SAMP:COUN 2<br>READ?<br>Typical Response : +8.36187601E-03,+8.34387541E-03 |

- ◆ Under the condition of opening in automatic adjustment range, the instrument is based on the input signal selection range.
- ◆ This parameter is set to its default value after a Factory Reset(\*RST) or Instrument Preset (SYSTem:PRESet).

**2.9.35 [SENSe:]VOLTage[:DC]:NPLC {<PLC>|MIN|MAX|DEF}****[SENSe:]VOLTage[:DC]:NPLC? [{MIN|MAX|DEF}]**

Sets the integration time in number of power line cycles (PLC) for DC voltage and ratio measurements. Integration time is the period that the instrument's analog-to-digital (A/D) converter samples the input signal for a measurement. A longer integration time gives better measurement resolution but slower measurement speed.

| Parameters for T3DMM6-5 and T3DMM6-5-SC                                                                                                                                                                                                               | Typical Return |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| {100 10 1 0.5 0.05 0.005} , default 10. On the front panel, 100 10 1 0.5 0.05 0.005 corresponds to the NPLC menu under 100PLC 10PLC 1PLC 0.5PLC 0.05PLC 0.005PLC (50Hz power supply) or 100PLC 10PLC 1PLC 0.6PLC 0.05PLC 0.006PLC (60Hz power supply) | +1.0000000E+01 |
| Configure DC voltage measurements using a 10 PLC integration time.<br>CONF:VOLT:DC<br>VOLT:DC:NPLC 10                                                                                                                                                 |                |

- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

| Parameters for T3DMM4-5 and T3DMM5-5                                                                                                  | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|
| {0.3 1 10} T3DMM4-5 default 10, T3DMM5-5 default 1. On the front panel, 0.3 1 10 corresponds to the Speed menu under fast middle slow | +1.0000000E+01 |
| Configure DC voltage measurements using a 10 PLC integration time.<br>CONF:VOLT:DC<br>VOLT:DC:NPLC 10                                 |                |

**2.9.36 [SENSe:]VOLTage[:DC]:IMPedance <impedance>****[SENSe:]VOLTage[:DC]:IMPedance?**

Select the input impedance of DC voltage measurement mode.

| Parameter                          | Typical Return |
|------------------------------------|----------------|
| {10M 10G} , default open           | 10M            |
| Select 10M as the input impedance: |                |
| VOLT:DC:IMP 10M                    |                |

- ◆ This parameter is only valid in the 200mV and 2V range.
- ◆ This parameter is set to its default value after a Factory Reset.

**2.9.37[SENSe:]VOLTage[:AC]:BANDwidth{|MIN|MAX|DEF}****[SENSe:]VOLTage[:AC]:BANDwidth? [{MIN|MAX|DEF}]**

Sets AC current filter function.

| Parameter                                                                                               | Typical Return |
|---------------------------------------------------------------------------------------------------------|----------------|
| {3 20 200} , default 20. On the front panel, 3 20 200 corresponds to the NPLC menu under 3HZ 20HZ 200HZ | 20HZ           |
| Configure AC voltage measurements using a 20Hz bandwidth:                                               |                |
| CONF:VOLT:AC<br>VOLT:AC: BAND 20                                                                        |                |

- ◆ This parameter is set to its default value after a Factory Reset.

**2.9.38[SENSe:]VOLTage[:DC]:AZ[:STATe] {ON|1|OFF|0}****[SENSe:]VOLTage[:DC]:AZ[:STATe]?**

Enables or disables the Auto-Zero function for DC current measurements.

| Parameter                         | Typical Return    |
|-----------------------------------|-------------------|
| {ON 1 OFF 0} , default OFF        | 0 (OFF) or 1 (ON) |
| Disables the Auto-Zero function . |                   |
| CONF:VOLT:DC<br>VOLT:DC:AZ OFF    |                   |

### [SENSe]:VOLTage[:DC]:FILTer[:STATe] {ON|1|OFF|0}

[SENSe]:VOLTage[:DC]:FILTer[:STATe] ?

Dc voltage measurement mode filter switch configuration.

| Parameter                       | Typical Return |
|---------------------------------|----------------|
| {ON 1 OFF 0} , default ON       | 0(OFF)or(ON)   |
| Open the dc current mode filter |                |
| CONF:VOLT:AC                    |                |
| VOLT:FILTER ON                  |                |

- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

### [SENSe:]CAPacitance Subsystem

This subsystem configures capacitance measurement.

#### Command Summary

[SENSe:]CAPacitance:NULL[:STATe]  
[SENSe:]CAPacitance:NULL:VALue  
[SENSe:]CAPacitance:NULL:VALue:AUTO  
[SENSe:]CAPacitance:RANGe  
[SENSe:]CAPacitance:RANGe:AUTO

#### 2.9.39 [SENSe:]CAPacitance:NULL[:STATe] {ON|1|OFF|0}

[SENSe:]CAPacitance:NULL[:STATe]?

Enable or disable the zero function.

| Parameter                                                                                                                                                                                  | Typical Return |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| {ON 1 OFF 0} , default ON                                                                                                                                                                  | 0(OFF)or1(ON)  |
| Use zero functions from the measured value minus 100 nf to configure the capacitance measurement. Make and read two measurements, sent the results to the output buffer of the instrument. |                |
| CONF:CAP                                                                                                                                                                                   |                |
| CAP:NULL:STAT ON;VAL 100nF                                                                                                                                                                 |                |
| SAMP:COUN 2                                                                                                                                                                                |                |
| READ?                                                                                                                                                                                      |                |
| Typical Response: +4.79899595E-10,+4.79906446E-10                                                                                                                                          |                |

- ◆ Enable the scaling function will also enable automatic zero value choice. ([SENSe:]Capacitance:{AC|DC}:NULL:VALue:AUTO ON).
- ◆ To set a fixed return null, use this command:  
[SENSe:]Capacitance:{AC|DC}:NULL:VALue.
- ◆ This parameter is set to its default value after a Factory Reset.

**2.9.40 [SENSe:]CAPacitance:NULL:VALue {<value>|MIN|MAX|DEF}****[SENSe:]CAPacitance:NULL:VALue? [{MIN|MAX|DEF}]**

Stores a null value for capacitance measurements. .

| Parameter                                                                                                                                                                                 | Typical Return |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| -12 to +12 mF , default 0.                                                                                                                                                                | +1.2000000E-02 |
| Use zero function from the measured value minus 100 nf to configure the ac current measurements. Make and read two measurements, sent the results to the output buffer of the instrument. |                |
| CONF:CAP<br>CAP:NULL:STAT ON;VAL 100nF<br>SAMP:COUN 2<br>READ?                                                                                                                            |                |
| Typical Response : +4.79899595E-10,+4.79906446E-10                                                                                                                                        |                |

- ◆ Specifies the return to zero will disable automatic selection to zero ([SENSe:]Capacitance:NULL:VALue:AUTO OFF).
- ◆ To use the null value, the null state must be on ([SENSe:]Capacitance:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

**2.9.41 [SENSe:]CAPacitance:NULL:VALue:AUTO {ON|1|OFF|0}****[SENSe:]CAPacitance:NULL:VALue:AUTO?**

Enable or disable the automatic zero value choice.

| Parameter                 | Typical Return |
|---------------------------|----------------|
| {ON 1 OFF 0} , default ON | 0(OFF)or1(ON)  |

Using the automatic selection of zero value to measure.  
CAP:NULL:VAL:AUTO ON  
READ?  
Typical Response : +0.00000000E+00,+1.02300000E-01

- ◆ When automatic reference selection is ON, the first measurement made is used as the null value for all subsequent measurements. [SENSe:]Capacitance:NULL:VALue will be set to this value. Automatic null value selection will be disabled.
- ◆ When automatic null value selection is disabled (OFF), the null value is specified by this command:[SENSe:]Capacitance:NULL:VALue.
- ◆ The instrument enables automatic null value selection when the null function is enabled ([SENSe:]Capacitance:NULL:STATe ON).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

**2.9.42 [SENSe:]CAPacitance:RANGe {<range>|MIN|MAX|DEF}****[SENSe:]CAPacitance:RANGe? [{MIN|MAX|DEF}]**

Manually choose measurement range.

| Parameters for T3DMM6-5 and T3DMM6-5-SC                                                                                                                                          | Typical Return |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> :<br>{2nF 20nF 200nF 2uF 20uF 200uF 2mf 20mf 100mf AUTO}<br>Default 2uF.                                                                                                 | +2.0000000E-06 |
| Using the 2uF capacitance to measure. Make and read two measurements.<br>CONF:CAP<br>CAP:RANG 2E-6<br>SAMP:COUN 2<br>READ?<br>Typical Response : +7.28283777E-10,+7.28268544E-10 |                |

- ◆ Choose the fixed range ([SENSe:]<function>:RANGe) , disable the automatic adjustment range.
- ◆ If the input signal is greater than can be measured on the specified manual range, the instrument displays the word Overload on front panel and returns "9.9E37" from the remote interface.
- ◆ This parameter is set to its default value after a Factory Reset or CONFigure function.

| Parameters for T3DMM4-5 and T3DMM5-5                                                                                                                                             | Typical Return |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <range> : {2nF 20nF 200nF 2uF 20uF 200uF 10000uf AUTO}<br>Default 2uF.                                                                                                           | +2.0000000E-06 |
| Using the 2uF capacitance to measure. Make and read two measurements.<br>CONF:CAP<br>CAP:RANG 2E-6<br>SAMP:COUN 2<br>READ?<br>Typical Response : +7.28283777E-10,+7.28268544E-10 |                |

**2.9.43 [SENSe:]CAPacitance:RANGe:AUTO {OFF|ON|ONCE}****[SENSe:]CAPacitance:RANGe:AUTO?**

Enable or disable automatic adjustment range.

| Parameter                 | Typical Return |
|---------------------------|----------------|
| {ON 1 OFF 0} , default ON | 0(OFF)or1ON)   |

Configure AC current measurement and executed immediately. Make and read two measurements.

CONF:VOLT:AC  
VOLT:AC:RANG:AUTO ONCE  
SAMP:COUN 2  
READ?

Typical Response : +8.36187601E-03,+8.34387541E-03

- ◆ The situation in the automatic adjustment range enabled, the input signal range based on the instrument.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

**[SENSe:]CONTinuity**

This subsystem configures continuity measurement.

**Command Summary**

[SENSe:]CONTinuity:THreshold:VALue

**2.9.44 [SENSe:]CONTinuity:THreshold:VALue {<value>}|MIN|MAX|DEF}**

**[SENSe:]CONTinuity:THreshold:VALue?**

Sets the value for threshold resistance

| Parameter                             | Typical Return |
|---------------------------------------|----------------|
| 0~2000 Ω , default 0                  | +2.0000000E+03 |
| Sets the threshold resistance to 2000 |                |
| CONT:THR:VAL 2000                     |                |

- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

## 2.10 SYSTem Subsystem

### 2.10.1 SYSTem:BEEPer:STATE {ON|1|OFF|0}

#### SYSTem:BEEPer:STATE?

Disables or enables the beep heard during continuity, diode, or Probe Hold measurements, or when an error is generated from the front panel or remote interface.

| Parameter                                     | Typical Return |
|-----------------------------------------------|----------------|
| {ON 1 OFF 0} , default ON                     | 0(OFF)or1(ON)  |
| Disable keyboard click:<br>SYST:BEEP:STAT OFF |                |

- ◆ This command affect the beeper heard associated with diode and continuity tests, errors and so on.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), Instrument Preset (SYSTem:PRESet), or CONFigure function.

### 2.10.2 SYSTem:COMMunicate:LAN:IPADDress "<address>"

#### SYSTem:COMMunicate:LAN:IPADDress? [{CURRent|STATic}]

Assigns a static Internet Protocol (IP) address for the instrument.

| Parameter                                                     | Typical Return  |
|---------------------------------------------------------------|-----------------|
| Command : "nnn.nnn.nnn.nnn"                                   | "192.168.1.101" |
| Query : {CURRent STATic} , default CURRent                    |                 |
| Default : 169.254.3.5                                         |                 |
| Set a static IP address:<br>SYST:COMM:LAN:IPAD "10.11.13.212" |                 |

- ◆ This setting is non-volatile; it is not changed by power cycling, a Factory Reset (\*RST), or an Instrument Preset.(SYSTem:PRESet).
- ◆ This parameter is set to its default value when the instrument is shipped from the factory and after SYSTem:SECurity:IMMEDIATE.

### 2.10.3 SYSTem:COMMunicate:LAN:SMASK "<mask>"

#### SYSTem:COMMunicate:LAN:SMASK? [{CURRent|STATic}]

Assigns a subnet mask for the instrument to use in determining whether a client IP address is on the same local subnet.

| Parameter                                                  | Typical Return  |
|------------------------------------------------------------|-----------------|
| Command :<br>"nnn.nnn.nnn.nnn",default"255.255.0.0"        |                 |
| Query :<br>{CURRent STATic} , default CURRent              | "255.255.255.0" |
| Set the subnet mask:<br>SYST:COMM:LAN:SMAS "255.255.255.0" |                 |

- ◆ A value of "0.0.0.0" or "255.255.255.255" indicates that subnet is not being used.
- ◆ **CURRent**: returns address currently being used by the instrument.
- ◆ **STATic**: returns static address from non-volatile memory. This address is used if DHCP is disabled or unavailable.
- ◆ This setting is non-volatile; it is not changed after a Factory Reset (\*RST), or an Instrument Preset(SYSTem:PRESet).

## 2.11 TRIGger Subsystem

The TRIGger subsystem configures the triggering that controls measurement acquisition.

### Command Summary

TRIGger:COUNT  
TRIGger:DELay  
TRIGger:DELay:AUTO  
TRIGger:SLOPe  
TRIGger:SOURce

### 2.11.1 TRIGger:COUNT {<count>|MIN|MAX|DEF|INFinity}

#### TRIGger:COUNT? [{MIN|MAX|DEF}]

Selects the number of triggers that will be accepted by the instrument before returning to the "idle" trigger state.

| Parameter                                                                                                                                                            | Typical Return                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1 to 1,000,000 or continuous (INFinity).<br>Default 1                                                                                                                | +1.0000000E+00<br>For a continuous trigger (INFinity), the query returns "9.9E37". |
| Return ten sets of five DC voltage measurements,<br>CONF:VOLT:DC<br>SAMP:COUN 5<br>TRIG:COUN 10<br>READ?<br>Typical Response: -1.85425399E-04, ... (50 measurements) |                                                                                    |

- ◆ You can use the specified trigger count in conjunction with a sample count (SAMPlE:COUNT), which sets the number of samples to be made per trigger. In this case, the number of measurements returned will be the sample count multiplied by the trigger count.
- ◆ You can store up to 10,000 measurements in the reading memory. If reading memory overflows, new measurements will overwrite the oldest measurements stored; the most recent measurements are always preserved. No error is generated, but the Reading Mem Ovfl bit (bit 14) is set in the Questionable Data Register's condition register (see Status System Introduction).
- ◆ This parameter is set to its default value after a Factory Reset (\*RST), or an Instrument Preset(SYSTem:PRESet).

## 2.11.2 TRIGger:DELay {<seconds>|MIN|MAX|DEF}

### TRIGger:DELay? [{MIN|MAX|DEF}]

Sets the delay between the trigger signal and the first measurement.

| Parameter                                                                                                                                 | Typical Return  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>T3DMM6-5(-SC)</b> 0 to ~1000 seconds<br>(~1 $\mu$ s steps), <b>T3DMM4-5</b> and <b>T3DMM5-5</b><br>6ms to 10s (~1 us steps) default 1s | +1.00000000E-06 |

Return five DC voltage measurements. There is a 2 second delay before each measurement.

CONF:VOLT:DC 10  
 SAMP:COUN 5  
 TRIG:DEL 2  
 READ?

Typical Response :

+3.07761360E-03,-1.16041169E-03,+5.60585356E-06,+1.21460160E-04,+2.85898 531E-04

- ◆ Due to internal quantization, the actual delay that you set may be slightly different than your specified value. The increment is approximately 1  $\mu$ s. Use the query to determine the exact delay. For example, if you send TRIG:DEL 500 ms and then TRIG:DEL? the actual delay may be +5.00000753E-01.
- ◆ By default, TRIGger:DELay:AUTO is ON. The instrument automatically determines the delay based on function, range and integration time (see Automatic Trigger Delays). However, you may need to set a delay longer than the automatic delay for long cables, high capacitance or high impedance signals.
- ◆ If you specify a trigger delay with this command, that delay is used for *all* functions (except CONTinuity and DIODe) and ranges. The CONTinuity and DIODe tests ignore the trigger delay setting.
- ◆ If you have configured the instrument for more than one measurement per trigger (SAMPLE:COUNT >1), the delay is inserted after the trigger and between consecutive measurements.
- ◆ The instrument selects automatic trigger delay after a Factory Reset (\*RST) or an Instrument Preset (SYSTem:PRESet).

**2.11.3 TRIGger:DELay:AUTO {ON|1|OFF|0}****TRIGger:DELay:AUTO?**

Disables or enables automatic trigger delay.

| Parameter                 | Typical Return |
|---------------------------|----------------|
| {ON 1 OFF 0} , default ON | 0(OFF)or1(ON)  |

Return 5 DC voltage measurements, with an automatic delay between each measurement.

CONF:VOLT:DC 10

SAMP:COUN 5

TRIG:DEL:AUTO 1

READ?

Typical Response :

+3.07761360E-03,-1.16041169E-03,+5.60585356E-06,+1.21460160E-04,+2.85898531E-04

- ◆ Selecting a specific trigger delay using TRIGger:DELay disables the automatic trigger delay.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

## 2.11.4 TRIGger:SLOPe {POSitive|NEGative}

### TRIGger:SLOPe?

Selects whether the instrument uses the rising edge (POS) or the falling edge (NEG) of the trigger signal on the rear panel *Ext Trig* BNC connector.

| Parameter                                                                                                                                                                                                                                                             | Typical Return |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| {POSitive NEGative} , default<br>NEGative                                                                                                                                                                                                                             | POS or NEG     |
| Return ten sets of five DC voltage measurements, using a positive-going external trigger to start each measurement set:<br>CONF:VOLT:DC<br>SAMP:COUN 5<br>TRIG:COUN 10<br>TRIG:SOUR EXT;SLOP POS<br>READ?<br>Typical Response: -1.85425399E-04, ... (50 measurements) |                |

- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

## 2.11.5 TRIGger:SOURce {IMMEDIATE|EXTernal|BUS}

### TRIGger:SOURce?

Selects the trigger source for measurements

| Source    | Description                                                                                                                                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMMEDIATE | The trigger signal is always present. When you place the instrument in the "wait-for-trigger" state, the trigger is issued immediately.                                                                                                                                                                                     |
| BUS       | The instrument is triggered by *TRG over the remoteinterface once the DMM is in the "wait-for-trigger" state.                                                                                                                                                                                                               |
| EXTernal  | The instrument accepts hardware triggers applied to the rear-panel <b>Ext Trig</b> input and takes the specified number of measurements (SAMPLE:COUNT), each time a TTL pulse specified by OUTPut:TRIGger:SLOPe is received. If the instrument receives an external trigger before it is ready, it will buffer one trigger. |

| Parameter                                    | Typical Return  |
|----------------------------------------------|-----------------|
| {IMMEDIATE EXTernal BUS} , default IMMEDIATE | IMM, EXT or BUS |

Return ten sets of five DC voltage measurements, using a positive-going external trigger to start each measurement set:

CONF:VOLT:DC  
SAMP:COUN 5  
TRIG:COUN 10  
TRIG:SOUR EXT;SLOP POS  
READ?

Typical Response: -1.85425399E-04, ... ( 50 measurements)

- ◆ After selecting the trigger source, you must place the instrument in the "wait-for-trigger" state by sending INITiate or READ? A trigger will not be accepted from the selected trigger source until the instrument is in the "wait-for-trigger" state.
- ◆ This parameter is set to its default value after a Factory Reset (\*RST) or Instrument Preset (SYSTem:PRESet).

## 2.12 ROUTe Subsystem (T3DMM6-5-SC only)

The ROUTe subsystem configures the scanner that controls scan function.

Note: Support for the installation of a scan card with digital multimeter.

Command Summary

ROUTe:STATe  
 ROUTe:SCAN  
 ROUTe:STARt  
 ROUTe:FUNCTION  
 ROUTe:DELay  
 ROUTe:COUNt:AUTO  
 ROUTe:COUNt  
 ROUTe:LIMIt:{HIGH|LOW}  
 ROUTe:DATAROUTe:CHANnel  
 ROUTe:RELAtive  
 ROUTe:IMPedance  
 ROUTe:TEMPerature:RTD  
 ROUTe:TEMPerature:THER  
 ROUTe:TEMPerature:UNIT  
 ROUTe:BEEPer:STATe  
 ROUTe:{CONTInuity|DIODe}:THreshold:VALue  
 ROUTe:{FREQuency|PERiod}

### 2.12.1 ROUTe:STATe?

Return whether to install the scanner card.

| Parameter                                                                          | Typical Return    |
|------------------------------------------------------------------------------------|-------------------|
| NULL                                                                               | 0 (OFF) or 1 (ON) |
| whether to install the scanner card?                                               |                   |
| ROUTe:STATe?                                                                       |                   |
| Typical Response : ON ( Indicates that this table is installed with a scan card. ) |                   |

## 2.12.2 ROUTe:SCAN {ON|1|OFF|0}

### ROUTe:SCAN?

Open or close the scanner card function

| Parameter    | Typical Return    |
|--------------|-------------------|
| {ON 1 OFF 0} | 0 (OFF) or 1 (ON) |

Open the scanner card function, and return to the status of the scanning function :

ROUTe:SCAN ON  
ROUTe:SCAN?

Typical Response : ON

## 2.12.3 ROUTe: STARt {ON|1|OFF|0}

### ROUTe: STARt?

Start or stop scanning card measurement

| Parameter    | Typical Return    |
|--------------|-------------------|
| {ON 1 OFF 0} | 0 (OFF) or 1 (ON) |

Start the scan card and return to the status of the scan measurement :

ROUTe:SCAN ON  
ROUTe: STARt ON  
ROUTe: STARt?

Typical Response : ON

#### **2.12.4 ROUTe: FUNCTION {SCAN|STEP}**

##### **ROUTe: FUNCtion?**

Configure scan card loop mode.

| <b>Parameter</b>                                            | <b>Typical Return</b> |
|-------------------------------------------------------------|-----------------------|
| {SCAN STEP}                                                 | {SCAN STEP}           |
| Configure scan card step mode, and return scan cycle mode : |                       |
| ROUTe:SCAN ON                                               |                       |
| ROUTe: FUNC STEP                                            |                       |
| ROUTe: FUNC?                                                |                       |
| Typical Response : STEP                                     |                       |

#### **2.12.5 ROUTe: DELay {VALUE}**

##### **ROUTe: DELay?**

Configure scan card delay time.

| <b>Parameter</b>                                                               | <b>Typical Return</b> |
|--------------------------------------------------------------------------------|-----------------------|
| VALUE                                                                          | 0                     |
| Open the scanner card function, and configure the scan card delay time is 1S : |                       |
| ROUTe:SCAN ON                                                                  |                       |
| ROUTe: DEL 1                                                                   |                       |

## 2.12.6 ROUTe:COUNT:AUTO

### ROUTe:COUNT:AUTO?

Open or close scan card automatic cycle switch.

| Parameter                                                                       | Typical Return    |
|---------------------------------------------------------------------------------|-------------------|
| {ON 1 OFF 0}                                                                    | 0 (OFF) or 1 (ON) |
| Open the scanner card function, and open the scan card automatic cycle switch : |                   |
| ROUTe:SCAN ON                                                                   |                   |
| ROUTe: COUN:AUTO ON                                                             |                   |

## 2.12.7 ROUTe:COUNT {VALUE}

### ROUTe:COUNT?

Set the number of cycles of scan card.

| Parameter                                                                    | Typical Return |
|------------------------------------------------------------------------------|----------------|
| VALUE                                                                        | 1              |
| Open the scanner card function, and set the number of scan card cycle is 2 : |                |
| ROUTe:SCAN ON                                                                |                |
| ROUTe: COUN 2                                                                |                |

### **2.12.8 ROUTe: LIMIt:{ HIGH | LOW } {VALUE}**

**ROUTe: LIMIt:{ HIGH | LOW }?**

Setting the upper and lower limits of the scanning card channel.

| <b>Parameter</b>                                                                   | <b>Typical Return</b> |
|------------------------------------------------------------------------------------|-----------------------|
| VALUE                                                                              | 1                     |
| Setting the upper channel of the scanning card is 16, and the lower channel is 1 : |                       |
| ROUTe:SCAN ON                                                                      |                       |
| ROUTe: LIMI:HIGH 16                                                                |                       |
| ROUTe: LIMI:LOW 1                                                                  |                       |

### **2.12.9 ROUTe:DATA? {VALUE}**

Returns the final measurement value of the scan card setup channel.

| <b>Parameter</b>                                                                               | <b>Typical Return</b> |
|------------------------------------------------------------------------------------------------|-----------------------|
| VALUE                                                                                          | 1.79221344E-04 VDC    |
| Open the scanner card function, and return the final measurement value of the second channel : |                       |
| ROUTe:SCAN ON                                                                                  |                       |
| ROUTe: DATA? 2                                                                                 |                       |
| Typical Response : 1.79221344E-04 VDC                                                          |                       |

## 2.12.10 ROUTe: CHANnel

Configure scan card channel parameters.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                    | Return |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. CHANNEL (1-16)<br>2. SWITCH (ON/OFF)<br>3. MODE(DCV/DCI/ACV/ACI/2W/4W/CAP/FRQ/CONT/DIO/TEMP)<br>4. RANGE<br>DCV(AUTO, 200MLV, 2V, 20V, 200V)<br>ACI/DCI(2A)<br>FRQ/ACV(AUTO, 200MLV, 2V, 20V, 200V)<br>2W(AUTO,2000OHM,2KOHM,20KOHM,200KOHM,2MGOHM,<br>10MGOHM,100MGOHM)<br>4W(AUTO,2000OHM,2KOHM,20KOHM,200KOHM,2MGOHM,<br>10MGOHM, 100MGOHM)<br>CAP(AUTO, 2NF, 20NF, 200NF, 2UF, 20UF, 200UF, 2MF, 20MF, 100MF)<br>5. SPEED (SLOW/FAST) |        |
| Open the scanner card function, and configure the 1,2 channel :<br><br>ROUTe:SCAN ON<br>ROUT:CHAN 1,ON,2W,2KOHM,SLOW<br>ROUT:CHAN 1,ON,CONT                                                                                                                                                                                                                                                                                                  |        |

**2.12.11 ROUTe: CHANnel ? {CHANNEL}**

Return scan card channel parameters.

| Parameter | Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-16      | <p>1. CHANNEL (1-16)</p> <p>2. SWITCH (ON/OFF)</p> <p>3. MODE(DCV/DCI/ACV/ACI/2W/4W/CAP/FRQ/CONT/DIO/TEMP)</p> <p>4. RANGE<br/>DCV(AUTO, 200MLV, 2V, 20V, 200V) ACI/DCI(2A)<br/>FRQ/ACV(AUTO, 200MLV, 2V, 20V, 200V)<br/>2W(AUTO,200OHM,2KOHM,20KOHM,200KOHM,2MGOHM,<br/>10MGOHM,100MGOHM)<br/>4W(AUTO,200OHM,2KOHM,20KOHM,200KOHM,2MGOHM, 10MGOHM,<br/>100MGOHM)<br/>CAP(AUTO, 2NF, 20NF, 200NF, 2UF, 20UF, 200UF, 2MF, 20MF, 100MF)</p> <p>5. SPEED (SLOW/FAST)</p> |
|           | <p>Open the scanner card function, and return to the 1 channel parameters :</p> <p>ROUTe:SCAN ON<br/>ROUT:CHAN ? 1</p> <p>Typical Response : 1,ON,DCV,AUTO ,SLOW</p>                                                                                                                                                                                                                                                                                                  |

**2.12.12 ROUTe: RELAtive**

Relative value switch of scanning card measuring mode.

| Parameter                                                                                                                                                     | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1.MODE(DCV/DCI/ACV/ACI/2W/4W/<br>CAP/FRQ/TEMP)<br>2.SWITCH (ON/OFF)                                                                                           | NULL           |
| Open the scanner card function, and configure the voltage measurement mode to the relative value of the switch to open :<br>ROUTe:SCAN ON<br>ROUT:RELA DCV,ON |                |

**2.12.13 ROUTe: IMPedance**

Configure the impedance under the scan card.

| Parameter                                                                                                 | Typical Return |
|-----------------------------------------------------------------------------------------------------------|----------------|
| 10M / 10G                                                                                                 | NULL           |
| Open the scanner card function, and the configuration impedance is 10M :<br>ROUTe:SCAN ON<br>ROUT:IMP 10M |                |

**2.12.14 ROUTe: TEMPerature:RTD**

Configuration of thermal resistance sensor model.

| Parameter                                                                                     | Typical Return |
|-----------------------------------------------------------------------------------------------|----------------|
| PT100                                                                                         | NULL           |
| configure the thermal resistance sensor model PT100 :<br>ROUTe:SCAN ON<br>ROUT:TEMP:RTD PT100 |                |

### 2.12.15 ROUTe: TEMPerature: THER

Configuration scanner card thermocouple sensor model.

| Parameter                                                                                                                            | Typical Return |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|
| BITS90/EITS90/JITS90/KITS90/NITS90/RITS90/SITS90/TITS90                                                                              | NULL           |
| Open the scanner card function, and configure the thermal resistance sensor model KITS90 :<br>ROUTe:SCAN ON<br>ROUT:TEMP:THER KITS90 |                |

### 2.12.16 ROUTe: TEMPerature:UNIT

Configuration scanning card temperature measurement mode unit.

| Parameter                                                                                                                                   | Typical Return |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| C/F/K                                                                                                                                       | NULL           |
| Open the scanner card function, and configure the units in the mode of temperature measurement for K :<br>ROUTe:SCAN ON<br>ROUT:TEMP:UNIT K |                |

### 2.12.17 ROUTe:{FREQuency | PERiod}

Configuration scanning card frequency or cycle display mode.

| Parameter                                                                                  | Typical Return |
|--------------------------------------------------------------------------------------------|----------------|
| NULL                                                                                       | NULL           |
| Open scan card function, display frequency measurement mode :<br>ROUTe:SCAN ON<br>ROUT:FRE |                |

**2.12.18 ROUTe:{DCV|DCI}:AZ[:STATe]**

Configuration auto zero for scanning card DC voltage or current.

| Parameter                                                                                                     | Typical Return |
|---------------------------------------------------------------------------------------------------------------|----------------|
| {ON 1 OFF 0}                                                                                                  | NULL           |
| Open the scan card function, and configure DC voltage auto zero to open :<br>ROUTe:SCAN ON<br>ROUT: DCV:AZ ON |                |

**2.12.19 ROUTe:{RESistance| FRESistance}:AZ[:STATe]**

Configuration auto zero with scanning card resistance.

| Parameter                                                                                                     | Typical Return |
|---------------------------------------------------------------------------------------------------------------|----------------|
| {ON 1 OFF 0}                                                                                                  | NULL           |
| Open the scan card function, and configure RESistance auto zero to open :<br>ROUTe:SCAN ON<br>ROUT: RES:AZ ON |                |

**2.12.20 ROUTe:{FREQuency| PERiod}:APERture**

Configure gate time for scan card frequency measurement mode.

| Parameter                                                                                                      | Typical Return |
|----------------------------------------------------------------------------------------------------------------|----------------|
| {ON 1 OFF 0}                                                                                                   | NULL           |
| Open the scan card function, and configure the frequency gate time 1S :<br>ROUTe:SCAN ON<br>ROUT: FREQ: APER 1 |                |

# ABOUT TELEDYNE TEST TOOLS



## Company Profile

Teledyne LeCroy is a leading provider of oscilloscopes, protocol analyzers and related test and measurement solutions that enable companies across a wide range of industries to design and test electronic devices of all types. Since our founding in 1964, we have focused on creating products that improve productivity by helping engineers resolve design issues faster and more effectively. Oscilloscopes are tools used by designers and engineers to measure and analyze complex electronic signals in order to develop high-performance systems and to validate electronic designs in order to improve time to market.

The Teledyne Test Tools brand extends the Teledyne LeCroy product portfolio with a comprehensive range of test equipment solutions. This new range of products delivers a broad range of quality test solutions that enable engineers to rapidly validate product and design and reduce time-to-market. Designers, engineers and educators rely on Teledyne Test Tools solutions to meet their most challenging needs for testing, education and electronics validation.

## Location and Facilities

Headquartered in Chestnut Ridge, New York, Teledyne Test Tools and Teledyne LeCroy has sales, service and development subsidiaries in the US and throughout Europe and Asia. Teledyne Test Tools and Teledyne LeCroy products are employed across a wide variety of industries, including semiconductor, computer, consumer electronics, education, military/aerospace, automotive/industrial, and telecommunications.

Distributed by:

## Teledyne LeCroy (US Headquarters)

700 Chestnut Ridge Road  
Chestnut Ridge, NY, USA 10977-6499

Phone: 800-553-2769 or 845-425-2000  
Fax Sales: 845-578-5985  
Phone Support: 1-800-553-2769  
Email Sales: [contact.corp@teledynelecroy.com](mailto:contact.corp@teledynelecroy.com)  
Email Support: [support@teledynelecroy.com](mailto:support@teledynelecroy.com)  
Web Site: <http://teledynelecroy.com/>

World wide support contacts can be found at:  
<https://teledynelecroy.com/support/contact/#>